Berest, Y, Chalykh, O and Eshmatov, F (2008) Recollement of Deformed Preprojective Algebras and the CalogeroMoser Correspondence. Moscow Mathematical Journal, 8 (1). ISSN 16094514

Text
bec4.pdf Available under licence : See the attached licence file. Download (315Kb) 
Abstract
The aim of this paper is to clarify the relation between the following objects: (a) rank 1 projective modules (ideals) over the first Weyl algebra A_1; (b) simple modules over deformed preprojective algebras $\Pi_{\lambda}(Q)$ introduced by CrawleyBoevey and Holland; and (c) simple modules over the rational Cherednik algebras $H_{0,c}(S_n)$ associated to symmetric groups. The isomorphism classes of each type of these objects can be parametrized geometrically by the same space (namely, the CalogeroMoser algebraic varieties); however, no natural functors between the corresponding module categories seem to be known. We construct such functors by translating our earlier results on Ainfinity modules over A_1 to a more familiar setting of representation theory. In the last section we extend our construction to the case of Kleinian singularities $C^2/\Gamma$, where $\Gamma$ is a finite cyclic subgroup of $SL(2,C)$.
Item Type:  Article 

Copyright, Publisher and Additional Information:  © 2008, Independent University of Moscow. This is an author produced version of a paper published in Moscow Mathematical Journal. Uploaded with permission from the publisher. 
Keywords:  Weyl algebra, deformed preprojective algebra, Cherednik algebra 
Institution:  The University of Leeds 
Academic Units:  The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) 
Depositing User:  Symplectic Publications 
Date Deposited:  02 Jul 2012 09:33 
Last Modified:  09 Jun 2014 17:43 
Status:  Published 
Publisher:  Independent University of Moscow 
URI:  http://eprints.whiterose.ac.uk/id/eprint/74390 