White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

An energy description of wear mechanisms and its applications to oscillating sliding contacts

Fouvry, S., Liskiewicz, T., Kaspa, P.H. and Hannel, S. (2003) An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear, 255 (1-6). pp. 287-298. ISSN 0043-1648

Full text available as:
[img]
Preview
Text
repository_liskiewicz_paper14.pdf
Available under licence : See the attached licence file.

Download (626Kb)

Abstract

To quantify wear rates, the Archard approach is classically applied. It relates the wear volume to the product of the sliding distance and the normal load. A wear coefficient is then extrapolated and is supposed to establish the wear resistance of the studied material. This synthesis shows that this approach does not work when the friction coefficient is not constant. It appears to be much more relevant to consider the interfacial shear work as a significant wear parameter. This approach is applied to study the wear response of different steels and then extended to different hard TiN, TiC coatings under reciprocating sliding conditions. By identifying wear energy coefficients the wear quantification can be rationalized and the wear resistance of the studied tribosystems can be classified. This also appears to be a convenient approach to interpret the different wear mechanisms. Metallic materials involving plastic strain are analyzed from FEM computations. The energy balance confirms that a minor part of the dissipated energy is consumed by plasticity, whereas the major part participates in the heat and debris flow through the interface. When a load energy approach is introduced an accumulated density of the dissipated energy variable is considered to quantify the TTS (Tribologically Transformed Structure) formation. A wear ”scenario” of metallic structures is then discussed. This energy wear approach is applied to analyze hard coating wear mechanisms focusing on abrasion and oxidation phenomena. The local wear energy analysis is transposed, thus allowing the lifetime of hard coatings to be quantified.

Item Type: Article
Copyright, Publisher and Additional Information: Copyright © 2003 Elsevier Science B.V. This is an author produced version of a paper published in Wear. Uploaded in accordance with the publisher's self-archiving policy.
Keywords: Fretting, wear, SC653, TiN, TiC, coating, lifetime, energy approach
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Thermofluids, Surfaces & Interfaces (iETSI) (Leeds)
Depositing User: Mrs Fiona Slade
Date Deposited: 02 Dec 2008 14:54
Last Modified: 04 Jun 2014 13:20
Published Version: http://dx.doi.org/10.1016/S0043-1648(03)00117-0
Status: Published
Publisher: Elsevier
Refereed: Yes
Identification Number: 10.1016/S0043-1648(03)00117-0
URI: http://eprints.whiterose.ac.uk/id/eprint/4955

Actions (repository staff only: login required)