White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Towards Enhanced Prognostics with Advanced Data-Driven Modelling

Zaidan, Martha Arbayani, Mills, Andy R and Harrison, Robert F (2011) Towards Enhanced Prognostics with Advanced Data-Driven Modelling. In: Proceedings of The Eighth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies. The Eighth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, 20-22 June 2011, Cardiff. .

Full text available as:
[img]
Preview
Text
x253_front.pdf

Download (476Kb)

Abstract

A considerable amount of prognostics research has been conducted to improve the remaining useful life prediction of engineering assets. Advantages such as lowering sustainment costs and improving maintenance decision making, are significant motivations to enhance the prognostics capability. Sensor selection, data pre-processing, knowledge elicitation and the mathematical techniques are some of the elements required of prognostics research to enhance capability.

This paper takes a broad view of prognostics and explores techniques available from a variety of research and application disciplines. A prognostics dataflow diagram illustrates the complete prognostics process and the paper discusses the impact of improvements in each process step to enhance the prognostics performance. The mathematical approach to prognostics is a crucial issue. Exploring cross-disciplinary prognostic approaches is helpful to extract useful techniques from different domains and to fuse the strengths of each discipline.

A case study of fatigue induced crack-growth using Bayesian approaches is used to illustrate that data-driven prognostics can deliver benefits to the industry.

Item Type: Proceedings Paper
Institution: The University of Sheffield
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield)
Depositing User: Mr Martha Arbayani Bin Zaidan
Date Deposited: 21 Sep 2011 16:00
Last Modified: 08 Feb 2013 17:34
Status: Published
Refereed: Yes
URI: http://eprints.whiterose.ac.uk/id/eprint/43215

Actions (repository staff only: login required)