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Abstract 

 
A considerable amount of prognostics research has been conducted to improve the remaining 
useful life prediction of engineering assets.  Advantages such as lowering sustainment costs 
and improving maintenance decision making, are significant motivations to enhance the 
prognostics capability. Sensor selection, data pre-processing, knowledge elicitation and the 
mathematical techniques are some of the elements required of prognostics research to 
enhance capability.  
 
This paper takes a broad view of prognostics and explores techniques available from a variety 
of research and application disciplines. A prognostics dataflow diagram illustrates the 
complete prognostics process and the paper discusses the impact of improvements in each 
process step to enhance the prognostics performance. The mathematical approach to 
prognostics is a crucial issue. Exploring cross-disciplinary prognostic approaches is helpful to 
extract useful techniques from different domains and to fuse the strengths of each discipline.  
 
A case study of fatigue induced crack-growth using Bayesian approaches is used to illustrate 
that data-driven prognostics can deliver benefits to the industry. 
 
1. Introduction 
 
1.1 The importance and definition of prognostics  
 
The operational life of vital assets is traditionally estimated using a conservative statistic, the 
so called “safe life removal interval”.  The use of on-line health monitoring has created 
opportunities to increase the fidelity of the predictions, potentially reducing conservatism and 
operational disruption. 
 
Statistical reliability distributions are based on the collective behaviour of a population of 
individuals acting in an assumed environment.  The reliability distribution must capture the 
spread of failure behaviour resulting from each individual having its own sources of 
durability variation caused by manufacturing, material or maintenance.  In addition, Byington 
et al. [1] claim that based on historical evidence, the actual usage of components/systems 
such as military aircraft is often significantly different from the intended usage and the 
operating environment. For example, the usage will depend on the pilot and flying style in 
aviation systems. Moreover, major causes of unscheduled maintenance events are 
unanticipated and extreme operating scenarios, which lead to serious operational issues, such 
as failure of missions and disruption costs. Therefore, it is advantageous to deploy condition-
based maintenance, such that maintenance operations are based upon detection of faults 
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(diagnostics) and the prediction of failure times (prognostics). Benefits from improved life 
prediction are given in [2,3]. 
 
A number of definitions of prognostics have been cited that seem to mix prognostic and 
diagnostic activities. For example, Schwabacher and Goebel [4] define prognostics as 
detecting the precursors of a failure, and predicting how much time remains before a likely 
failure. We would suggest that this refers to both diagnostics and prognostics and prefer a 
definition closer to that suggested by Saxena [5] that prognostics is the estimation of 
remaining useful life (RUL), where we would define RUL as the time until the functional 
requirements can no longer be met. Sikorska et al. [6] introduce a simple delineation 
regarding the relationship between diagnostics and prognostics: “diagnostics involves 
identifying and quantifying damage that has occurred, whilst prognostics are concerned with 
trying to predict the damage that is yet to occur”. Therefore, prognostics can be considered as 
an extension to diagnostics and defined as: prediction, with quantified certainty, of residual 
functional capability. 
 
Application of on-line health monitoring to enable prognostics is a relatively immature 
activity within the aviation industry.  It is seen as advisable to explore other fields in search 
of experience.  In this paper we draw on examples from techniques used in the health care of 
patients and econometric price modelling, exploring present and potential interaction enabled 
by parallels in these fields. Analogies can be made between the terms used in prognostics and 
in other disciplines, such as biomedicine and econometrics. For example, assets correspond to 
patients and commodities, failure modes map to disease and market events and operational 
conditions are comparable with smoking activity and market sentiment. 
 
From the ideas explored in our cross-disciplinary review, we illustrate the potential 
advantages of fusing condition monitoring information with statistical reliability 
distributions.  The Bayesian framework adopted allows the concepts and advantages to be 
illustrated graphically. 
 
1.2 Background: cross-disciplinary prognostics   
 
A wide viewpoint has been adopted whilst reviewing the literature related to prognosis.  This 
macroscopic view has uncovered three different classes of technique related to prognostics: 
reliability, survival analysis and forecasting. These fields have been explored in the context 
of the disciplines of health care and finance, as well as in engineering.   

 
Reliability is the ability of a system or component to perform its required functions under 
stated conditions for a specified period of time [7]. Reliability theory has been widely used in 
the aviation industry to estimate the failure time probability distributions for aircraft fleets. 
Examples of reliability theory include: the use of the Bernstein reliability model to model the 
life characteristics of machine components by Ahmed and Sheikh [8], and the development of 
statistical methods for using degradation measures to estimate a time-to-failure distribution in 
Lu and Meeker [9]. The reliability failure distribution can be used as initial (prior) probability 
distributions (the knowledge base) in the prognostics process to reduce uncertainty.  This 
field is concerned with inferences based upon a population of assets. 
 
Survival Analysis is a collection of statistical procedures for data analysis for which the 
outcome variable of interest is the time until an event occurs [10].  In contrast to the 
population approach prevalent in reliability theory, the techniques described as survival 
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analysis are often more individual centred, especially in biomedical applications. For 
instance, research into the survival of multiple myeloma patients to examine the association 
between the values of certain explanatory variables or covariates and the survival time of 
patients, conducted by Medical Centre of the University of West Virginia, USA [11]. Another 
field related to survival analysis is named competing risks analysis. Competing risks analysis 
is a field of applied statistics that has the ability to handle dependent failure. The experts in 
this area claim that “if something can fail, it can often fail in one of several ways and in more 
than one way at a time”. The unique capability of competing risks analysis in handling 
information censoring and dependent failures, makes this approach potentially valuable for 
analysing and modelling time-to-event data [12]. 
  
In analysing survival data, information censoring, such as the incomplete observation of 
survival times, is a particular challenge. Survival analysis has already tackled some of these 
problems and there is a portfolio of mathematical models and methodologies that have been 
developed to extract information from the censored observations maximally [13]. There is 
clearly a strong potential for survival analysis to provide new tools for prognostics. 
 
Forecasting is the construction of a suitable model based upon analysis of the historical 
development of a data series and utilisation of information relevant to its likely future 
development [14]. This discipline is very common in econometrics, such as commodity price 
modelling and consumption predictions. In addition, other fields of science, e.g. metrology, 
have obtained benefit from this theory [15]. Evidence of numerous forecasting methods have 
been applied to prognostics, for example, the use of autoregressive integrated moving average 
(ARIMA) models to predict future machine health [16] and prognosis of remaining bearing 
life using neural networks [17]. Forecasting methods, through the use of sensor data, are 
adept at capturing the idiosyncratic failure behaviour of real world components.  
 
Because each discipline has unique capabilities and past successes in research, it is believed 
that these advantages should be taken into consideration to develop optimal prognostic 
methods. Figure 1 shows the interaction of prognostics with these fields. Prognostics is a 
subset of the combination of these disciplines and therefore this representation is a powerful 
illustration of approaches that might be applied in prognostics.  
 

 
 

Figure 1. The interaction of prognostics with different disciplines 
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An example of the combination of these theories for prognostics is the research of Gebraeel 
et al. [18] in bearing prognostics. Reliability theory is used to create knowledge based on a 
population of bearings. A probabilistic forecasting method, in this case based on a Bayesian 
approach, is used to compute the update of the posterior parameters in order to predict 
remaining useful life of bearing. 
 
The focus of our research work is to extract useful techniques from different domains and to 
fuse these in order to take the strength of each discipline. 
 
2. The factors influencing prognostics accuracy 
 
Much effort in prognostics research focuses on developing algorithms that can provide a 
precise RUL estimate with a small uncertainty bound around the prediction. In fact several 
factors influence the performance of prognostic tasks: each process step has specific 
functions and contributions to overall prognostic accuracy. 

 

 
Figure 2. The prognostics process 

 
Figure 2 shows a diagram of the prognostics process. Data collection is a fundamental part of 
prognostics and often requires the use of sensor systems to measure environmental and 
operational parameters. Sensor selection is one of the factors that have an effect on 
prognostic accuracy, which is dependent on the sensor accuracy, sensitivity, precision, 
resolution and measurement ranges [19]. 
 
Data pre-processing includes feature extraction and diagnostics.  These tasks detect 
abnormalities, identify failure modes and are potentially used to select a suitable prognostic 
model [6]. 
 
The knowledge base contains prior information about the pre-supposed reliability and failure 
behaviour of components/systems. Physics of failure analysis, expert opinions, previous 
qualification tests and in-service data are examples of sources for the knowledge base. The 
first two of these sources can be used for model-based approaches whereas the last two can 
be employed for data-driven prognostics. In-service collected data offers potential to account 
for real component and environmental variability and may provide a superior alternative to 
acceleration test data for which identifying an actual operational relationship can be difficult 
[7]. 
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Finally, the prognostics algorithms play a very important task. Schwabacher and Goebel [4] 
surveyed numerous prognostics approaches and classify them into two main categories: 
model-based and data-driven approaches. In general, it can be said that the use of data-driven 
approaches is more promising because of their ability to deal with complex systems, which 
are difficult to capture with physical modelling.  Techniques, such as those used in reliability 
theory allow the inclusion of covariates, such as environmental effects. Another reason for 
using the data driven approach is the abundance of normal degradation data because of sensor 
technology improvements. However, if it is possible to model degradation of components 
from physical considerations, both of these methods can be fused to take the strengths of each 
approach. 
 
The most popular approaches to data-driven prognostics are artificial neural networks and 
fuzzy logic, as detailed in [4] and [6]. Bayesian techniques might be the most promising 
approach because of their ability to update probabilities of future observations by 
incorporating evidence from previous experience and experiment into the overall conclusion 
[20]. Numerous researchers have implemented this approach in prognostic models such as 
[18,21-23]. A prognostics case study using a Bayesian approach will be discussed in the next 
section.  
 
It can be concluded that each process in prognostics has a different function and affects the 
accuracy and performance of the overall system. This can be illustrated as shown in Figure 3, 
where inputs, approaches and the knowledge base are key determinants of prognostic 
accuracy. 
 

 
Figure 3. The factors influencing prognostic performance 
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3. A case study 
 
In this section, an example of a prognostics algorithm is discussed. The approach 
implemented uses a Bayesian method extracted from the intersection of reliability, 
forecasting and prognostics perspectives (Figure 1). Fatigue crack growth is selected as a case 
study. This process is affected by many sources of variability, such as loading, material 
properties, geometry and boundary conditions. Therefore it is essential to express the crack 
size after a certain number of load cycles through a probability distribution. Probabilistic 
fracture mechanics is an active research area and numerous studies have addressed both 
model-based and data-driven techniques for probabilistic crack growth and life prediction. 
The detail and the latest progress in the topic of fatigue crack growth can be found in [24].  
The assumption has been made is that periodic measurements are made of the crack length. 
 
In this paper, the fatigue-crack-growth data obtained from [9] is used for testing the 
algorithm. There are 21 sample degradation paths, one for each of 21 test units. A critical 
crack length of 1.5 inches is defined as a “failure”, a condition reached by half of the units. 
The sample paths contain useful information to estimate the time-to-failure distribution. 
 
A Bayesian updating method developed by [18] is used to predict the degradation path of 
fatigue-crack-growth data in order to estimate remaining useful life.  Readers are encouraged 
to refer to this reference for detail of the method.  This method uses real-time condition 
monitoring information to update the stochastic parameters of exponential models. The 
natural logarithm of the degradation signal is modelled at time ݐ as follows: 
 

ܮ ൌ ߠ ′  ݐߚ  ߳ሺݐሻ  ........................................................ (1) 
 
where ߳ሺݐሻ is a random estimation error term that follows a normal distribution with mean 
zero and variance ߪଶ. ߠ ,ߚ′ are normal random variables acting as tuning parameters for the 
estimated degradation model.  
 
A joint posterior distribution for the tuning parameters can be calculated using the Bayesian 
updating method and is given by: 
 

ߠሺ ′, ,ଵܮ|ߚ ,ଶܮ … , ሻܮ ן ݂ሺܮଵ, ,ଶܮ … , ߠหܮ ′, ߠሺߨሻߚ ′ሻߨሺߚሻ .......................... (2) 
  
 
where, ߨሺߠ ′ሻ and ߨሺߚሻ are the prior distributions of the signal model parameters determined 
from the estimation of the reliability characteristics of the population of units and 
݂ሺܮଵ, ,ଶܮ … , ߠหܮ ′,  ሻ is the likelihood function given the observed degradation signalߚ
,ଵܮ ,ଶܮ … , ,ଵݐ  at timesܮ ,ଶݐ … ,   .ݐ
 
Once the joint posterior is obtained, the predictive distributions can be calculated and 
therefore the failure time distribution can also be determined. 
 
Figure 4 shows the degradation signal of the fatigue crack growth of 21 units from which can 
be seen that about half of the data are right censored. Figure 5 illustrates the evolution of 
posterior means for ߠ ′and ߚ, as increased numbers of degradation signal measurements are 
incorporated. 
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Figure 4. Crack-length measurements versus time (in million cycles) 

 

 
Figure 5. The evolution of posterior means for ࣂ′and ࢼ for unit 10 
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Figures 6 and 7 show two situations where benefit can be realised from the Bayesian 
approach.  The first, in Figure 6, illustrates the potential for disruption avoidance.  Before any 
degradation data is collected (at 0 cycles of use) the best estimate of predicted removal time 
is based solely on the prior distribution’s 95% confidence limit (i.e. a time-based schedule).  
This distribution is the furthest right normal curve on the figure.  Were this schedule used, the 
component planned removal would be at 0.1 million cycles, clearly this is after the actual 
failure event and would incur disruption cost.  Collection of data over time and use of the 
Bayesian approach shows updated predictions can be made.  A prediction after 0.07 million 
cycles produces a probability distribution curve (solid line in figure) with a 95% confidence 
limit marked by an arrow.  This instructs the operator to remove the unit at 0.075 million 
cycles, which avoids the functional failure event and consequent disruption. 
 
Figure 7 demonstrates how the unit which has a high durability can incur lost useful life if the 
maintenance decision was based on the 95% confidence limit of prior distribution, again 
removal at 0.1 million cycles. This is obviously before the functional failure event and would 
waste a healthy component which will impact on profit.  Bayesian predictions at 0.07 million 
cycles of operation show that the safe removal limit may be extended to 0.15 million cycles.  
The uncertainty around the prediction increases because the predicted failure-time 
distribution moves further from the latest observation time (0.12 million cycles) and the mean 
prior failure time. 
 
These two figures explain that the Bayesian updating method improve the failure time 
distribution estimations. In addition, these scenarios illustrate well how prognostics change 
the business, especially in aerospace industry that has high cost components.  
 

 
Figure 6. Failure time distribution for unit 1 
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Figure 7. Failure time distribution for unit 21 

 
4. Conclusion 
 
In this paper, prognostics are explored from different viewpoints. This perspective is valuable 
to understand the possible approaches, the factors that impact performance and the potential 
cost benefits. Through a case study, the paper illustrates several advantages of taking the 
Bayesian route. 
 
The paper has presented an overview highlighting similarities between several disciplines and 
has identified common connections to prognostics.  The interaction diagram is helpful to 
classify prior art from different domains and to fuse the strengths of each discipline. 
 
The explanation of the factors influenced prognostics accuracy is provided to understand the 
prognostics process. The prognostic process represents a complete prognostics system needed 
to be deployed in field applications. One of the most influential accuracy factors is the 
prognostics approach, which is the main focus of the on-going research. The Bayesian 
methods have been identified to possess many appropriate traits, therefore this technique is 
used to analyse in a case study. 
 
The case study used fatigue crack growth data as a population of degradation signals which 
contains useful information to estimate the time-to-failure distribution. The approach 
demonstrated is extracted from the prior research in the intersection area of forecasting and 
reliability disciplines. The results from application to crack growth data show scenarios 
where a Bayesian treatment of prognostics has the potential to add value for industry over 
traditional time-based approaches.  
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In complex situations, when the environmental conditions are variable and the degradation 
signals are highly stochastic, the prediction becomes extremely difficult. Therefore, future 
research direction includes the use of covariates (explanatory parameters) to obtain precise 
results in more complex problems. Applying different models and more advanced approaches 
will also be taken into consideration when prognosing complex degradation characteristics. 
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