White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Shock-induced ignition of thermally sensitive explosives

Sharpe, G.J. and Short, M. (2004) Shock-induced ignition of thermally sensitive explosives. IMA Journal of Applied Mathematics, 69 (5). pp. 493-520. ISSN 1464-3634

Full text not available from this repository.

Abstract

The process of planar detonation ignition, induced by a constant-velocity piston or equivalently by a shock reflected from a stationary wall, is investigated using high-resolution one-dimensional numerical simulations. The standard one-step model with Arrhenius kinetics, which models thermally sensitive explosives, is employed. Emphasis is on comparing and contrasting the results of the finite activation temperature simulations with high activation temperature asymptotic predictions and previous simulations. During the induction phase, it is shown that the asymptotic results give qualitatively good predictions. However, for parameters representative of gaseous explosives, subsequent to thermal runaway at the piston and the formation of a reaction wave, the high activation temperature asymptotic theory is qualitatively incorrect for moderately high activation temperatures. It is shown that the results are very sensitive to the value of the activation temperature, especially the distance from the piston at which a secondary shock forms and the degree of unsteadiness in the reaction wave which moves away from the piston. The dependence of the ignition evolution on the other parameters (initial shock Mach number, heat of reaction and polytropic index) is also investigated. It is shown that qualitative predictions regarding the dependence of the ignition evolution on each of the parameters can be elucidated from finite activation temperature homogeneous explosion calculations together with the high activation temperature asymptotic shock ignition results. It is found that for sufficiently strong initiating shocks the ignition evolution is qualitatively different from cases studied previously in that no secondary shock forms. For a high polytropic index, corresponding to a simple equation of state model for condensed phase explosives, the results are in much better qualitative agreement with the asymptotic theory.

Item Type: Article
Copyright, Publisher and Additional Information: © 2004 by Institute of Mathematics and its Applications. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. Available from the publisher's web site.
Keywords: chemical reactions, detonation, numerical simulation
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Thermofluids, Surfaces & Interfaces (iETSI) (Leeds)
Depositing User: Repository Officer
Date Deposited: 31 Mar 2008 09:25
Last Modified: 29 Sep 2010 14:20
Published Version: http://dx.doi.org/10.1093/imamat/69.5.493
Status: Published
Publisher: Oxford University Press
Refereed: Yes
Identification Number: 10.1093/imamat/69.5.493
URI: http://eprints.whiterose.ac.uk/id/eprint/3716

Actions (repository staff only: login required)