White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

A low complexity iterative channel estimation and equalisation scheme for (data-dependent) superimposed training

Moosvi, S.M.A., McLernon, D.C., Alameda-Hernandez, E., Orozco-Lugo, A.G. and Lara, M.M. (2006) A low complexity iterative channel estimation and equalisation scheme for (data-dependent) superimposed training. In: 14th European Signal Processing Conference (EUSIPCO), 4 - 8 September 2006, Florence, Italy.

Available under licence : See the attached licence file.

Download (130Kb)


Channel estimation/symbol detection methods based on superimposed training (ST) are known to bemore bandwidth efficient than those based on traditional time-multiplexed training. In this paper we present an iterative version of the ST methodwhere the equalised symbols obtained via ST are used in a second step to improve the channel estimation, approaching the performance of the more recent (and improved) data dependent ST (DDST), but now with less complexity. This iterative ST method (IST) is then compared to a different iterative superimposed training method of Meng and Tugnait (LSST).We show via simulations that the BER of our IST algorithm is very close to that of the LSST but with a reduced computational burden of the order of the channel length. Furthermore, if the LSST iterative approach (originally based on ST) is now implemented using DDST, a faster convergence rate can be achieved for the MSE of the channel estimates.

Item Type: Conference or Workshop Item (Paper)
Keywords: Superimposed Training, Channel estimation, Frequency Selective fading, Iterative Channel estimation
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Integrated Information Systems (Leeds)
Depositing User: Syed M A Moosvi
Date Deposited: 18 May 2007
Last Modified: 26 Apr 2015 10:20
Status: Published
Refereed: No
Related URLs:
URI: http://eprints.whiterose.ac.uk/id/eprint/2483

Actions (repository staff only: login required)