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ABSTRACT

Channel estimation/symbol detection methods based on su-

perimposed training (ST) are known to be more bandwidth ef-

ficient than those based on traditional time-multiplexed train-

ing. In this paper we present an iterative version of the ST

method where the equalised symbols obtained via ST are used

in a second step to improve the channel estimation, approach-

ing the performance of the more recent (and improved) data

dependent ST (DDST), but now with less complexity. This

iterative ST method (IST) is then compared to a different it-

erative superimposed training method of Meng and Tugnait

(LSST). We show via simulations that the BER of our IST al-

gorithm is very close to that of the LSST but with a reduced

computational burden of the order of the channel length. Fur-

thermore, if the LSST iterative approach (originally based on

ST) is now implemented using DDST, a faster convergence

rate can be achieved for the MSE of the channel estimates.

1. INTRODUCTION

Digital communication systems require an estimate of the chan-

nel prior to equalisation. Channel estimation techniques fall

into three main categories: blind, semi-blind and trained. In

this work we mainly focus on the last category because of

its simplicity and satisfactory performance. Normally, the

training sequence used for channel estimation is allocated an

empty time slot in the transmitted frame, thus wasting band-

width. This drawback was overcome when the training se-

quence was instead added to the data in what is now called

superimposed training (ST) [1, 2]. But since training and in-

formation are sent at the same time, from the channel estima-

tion point of view, the information interferes with the train-

ing and effectively acts as unwanted noise. Later, in [3], a

modified ST known as data-dependent ST (DDST) was able

to make the information sequence transparent to the training

sequence, thus removing the “information noise” and hence

significantly improving channel estimation. In this paper we
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present a similar way of alleviating — but not fully cancelling

as DDST achieves— the effects of the information data noise

in ST. This is done in an iterative manner, where the equalised

symbols obtained through traditional ST in a first step are fed

back to the ST algorithm so that the information noise can

be reduced, and hence better channel estimation and symbol

detection is obtained, which in turn can be used in the next

iteration. The cancellation of information noise will only be

perfect when accurate equalisation is achieved (i.e. long data

records and high SNR). In this situation the iterative ST (IST)

will aproach the performance of DDST. The novelty of this

IST approach is that by re-using the ST equalised symbols

again in the ST algorithm, we get DDST performance, but

as we will see later, with relatively little additional computa-

tional burden.

An alternative iterative approach, is not to re-use the equal-

ised symbols in the actual ST algorithm as we have just pro-

posed, but to re-use these symbols for a traditional least squares

channel estimate of a fully trained system. This least squares

ST (LSST) approach is not new, and has previously been used

in [4]. The great disadvantage of LSST is its large computa-

tional complexity when compared with the proposed IST al-

gorithm.

Now, given that both iterative procedures (the new IST

and the already existing LSST) discussed here feed back the

equalised symbols obtained with ST, a better performance is

expected if DDST is employed instead of ST. But an iterative

DDST, in the fashion of IST, will not provide better channel

estimates than DDST since DDST already removes the in-

formation noise —which is the desired effect of IST. On the

other hand, a least squares DDST instead of ST is expected

to approach the behaviour of fully trained estimation quicker

than the LSST method in [4]. So the objectives of this paper

are then:

i) To develop a new low complexity iterative ST (IST) and

show that its performance approaches that of DDST.

ii) To develop the iterative method using least squares for

DDST (i.e., LSDDST) and to compare its performance

with LSST (as proposed in [4]).

iii) To compare via simulations the channel estimate MSE



and BER after equalisation for the new algorithms of

IST and LSDDST along with the existing LSST of [4].

2. ITERATIVE ST (IST) AND LEAST SQUARES
DDST (LSDDST)

We start with a brief overview of DD(ST).

2.1. A review of (data dependent) superimposed training

Consider a baseband equivalent digital communications sys-

tem within the ST/DDST scenario, where a periodic train-

ing sequence c(k) of length N and period P is added to the

information bearing symbols b(k) before transmission over

an FIR channel {h(k)}M−1
k=0 contaminated by additive, white,

Gaussian noise, n(k). In addition, for DDST a periodic (pe-

riod P ) data-dependent sequence e(k) = − 1
NP

∑

NP −1
i=0 b(iP+

k), k = 0, 1, . . . , P − 1 and NP = N

P
, is also included at the

transmitter [3]. Note that for ST, e(k) = 0. Then in general,

x(k) =

M−1
∑

m=0

h(m)b(k − m) +

M−1
∑

m=0

h(m)e(k − m)+

+

M−1
∑

m=0

h(m)c(k − m) + n(k) + d

(1)

where k = 0, 1, . . . , N − 1. In matrix form:

Sh + n + d = x (2)

with s(k) = b(k) + c(k) + e(k). Note that S is the N ×
M data matrix. We will assume that all terms in (2) can be

complex; that b(k) and n(k) are from independent, identically

distributed (i.i.d.) random zero-mean processes, with powers

σ2
b

and σ2
n respectively; that c(k) is known with power σ2

c =
1
P

∑P−1
k=0 |c(k)|2; and d is an unknown DC-offset (see [1, 2]

for explanation regarding d). The problem is first to estimate

{h(k)}M−1
k=0 from the N received samples of x(k), and then

via equalisation to estimate the transmitted data b(k). As the

method described in [5] can easily be modified to include the

iterative process to be described (and this will be shown in

a later paper), we will assume for simplicity of presentation

that perfect synchronisation and knowledge of the DC-offset

are provided. So we can, in what follows, set d = 0 and

P = M . Note that P > M is only required if the DC-offset

and/or the synchronisation have to be estimated [5].

Now as in [2] we can write

ŷ(j) =
1

NP

NP−1
∑

i=0

x(iP + j) (3)

with j = 0, 1, . . . , P − 1, where ŷ(j) is an estimate of the

periodic (period P ) cyclic mean y(j) ≡ E{x(iP + j)}. So

from (1) and (3) we can easily show that

ŷ(j) =
M−1
∑

m=0

h(m)b̃(j − m) +
M−1
∑

m=0

h(m)e(j − m)+

+

M−1
∑

m=0

h(m)c(j − m) + ñ(j)

(4)

with j = 0, 1, . . . , P − 1, where

b̃(k) =
1

NP

NP−1
∑

i=0

b(iP + k) (5)

with k = 1 − P, 2 − P, . . . , P − 1, and

ñ(j) =
1

NP

NP−1
∑

i=0

n(iP + j) (6)

with j = 0, 1, . . . , P − 1. So (4) can now be written as

(C + B̃ + E)h = ŷ − ñ (7)

where C and E are P×P circulant matrices with first columns

[c(0) c(1) . . . c(P − 1)]T and [e(0) e(1) . . . e(P − 1)]T re-

spectively, and h = [h(0) h(1) . . . h(P − 1)]T , with similar

expressions for ŷ and ñ. Now the P × P matrix B̃ can be

expressed as B̃ = B̃1 + B̃2, where B̃1 is circulant with first

column [b̃(0) b̃(1) . . . b̃(P − 1)]T and B̃2 is upper triangu-

lar Toeplitz and
[b(−k)−b(N−k)]

NP
are the elements of the k-th

(k = 1, 2, . . . , P − 1) upper diagonal.

2.2. Iterative ST (IST)

In this section we consider two iterative channel estimation

schemes for ST. For the ST case (i.e. when E = 0 in (7)) we

have ŷ = (C + B̃)h + ñ. And using the channel estimate

C−1ŷ from [2] then

ĥST = C−1ŷ. (8)

Therefore substituting ŷ from (7) we get

ĥST = h + C−1B̃h + C−1ñ. (9)

Now we can think of two ways of improving the estimate of

h in the ST scenario. First estimate S in (2) using the ST

algorithm followed by minimum mean square error (MMSE)

equaliser (i.e., ŜST). So the channel estimate using the least-

squares method (ĥLSST) from (2) (i.e. LSST) would become

ĥLSST = (ŜH
STŜST)−1ŜH

STx (10)

which is essentially what was proposed in [4] and where ŜST

is a ST estimate of S. The second approach is to use ST fol-

lowed by a MMSE equaliser and make an estimate (
ˆ̃
B) of B̃



in (7). So we can improve the channel estimate upon ST in

(9) by using iterative ST (ĥIST) via

ĥIST = (C + ˆ̃
B)−1ŷ. (11)

Therefore substituting ŷ from (7) (with E = 0) we get

ĥIST = (C + ˆ̃
B)−1

{

[C + B̃]h + ñ
}

= (C + ˆ̃
B)−1(C + B̃)h + (C + ˆ̃

B)−1ñ.

Since we assume that
ˆ̃
B ≃ B̃ then (9) is improved (see (15))

via

ĥIST = (C + ˆ̃
B)−1ŷ ≃ h + (C + B̃)−1n̂. (12)

From (11) improved MMSE equalised symbols are obtained

that can be fed back again to be used in (11). This itera-

tive ST process (IST) can be repeated as needed. The ben-

efits of the iterative processes based on (10) or (11) instead

of the traditional ST based on (8) are now made clear if we

compute the channel estimate MSE. We define MSE(ĥ) :=

E
{

∑

M−1
k=0 |ĥ(k) − h(k)|2

}

, then we can show that

MSE(ĥST) =
1

NP

[

σ2
b

∑

P−1
k=0 |h(k)|2 + σ2

n

σ2
c

]

(13)

MSE(ĥLSST) ≃
σ2

n

NP (σ2
b

+ σ2
c )

(14)

MSE(ĥIST) ≃
σ2

n

NP σ2
c

(15)

assuming ŜST ≃ S and
ˆ̃
B ≃ B̃ in (10) and (11) respectively.

We have assumed training sequences with CCH = Pσ2
cI,

for the usual reasons given in [2, 5]. Since the IST method

of (11) is based on first-order statistics, it is computationally

very efficient compared to the LSST method proposed in [4],

and the performance of the IST will approach that of DDST

(see (19)) when accurate equalisation is achieved (i.e. long

data records and high SNR).

2.3. Least-squares DDST algorithm (LSDDST)

In this section we present an iterative scheme for DDST. It is

not difficult to see that if we choose e(k) = −b̃(k)P , with

k = 0, 1, . . . , N − 1 and (·)P implying arithmetic modulo-

P , in (1) —same result as [3] but obtained via a different

analysis— then E = −B̃1 and so for DDST (7) becomes

(C + B̃2)h = ŷ − ñ. (16)

Now if we use a cyclic prefix
{

b(−k) = b(N − k)
}P−1

k=1
then

B̃2 = 0, but even without a cyclic prefix limNP→∞ B̃2 = 0.

So let us assume a cyclic prefix (as was done in [3]), but in

practice, no cyclic prefix makes little difference since B̃2 ≈

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

C
H

A
N

N
E

L
 E

S
T

IM
A

T
IO

N
 E

R
R

O
R

ST (Theoretical) from (11)

ST

IST− 1st iteration

IST− 2nd iteration

TDM

DDST (Theoretical) from (17)

Fully Trained (Theoretical) from (12)
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Note that TDM and DDST coincide and so are indistinguish-

able on graph.

0, due to the usual choice of a relatively large NP . So from

(7) with (B̃ + E = 0) then for DDST we have

ĥDDST = C−1ŷ = h + C−1ñ. (17)

Using an equaliser based on the channel estimates of (17), we

can obtain an estimate for S in (2), ŜDDST. So similarly the

optimum channel estimate (ĥLSDDST) based on (2) and ŜDDST

using least-squares approach would be

ĥLSDDST = (ŜH
DDSTŜDDST)−1ŜH

DDSTx. (18)

As before, using ĥLSDDST in (18) and MMSE equalisation a

better estimate for S can be obtained (taking into account the

method to remove e(k) proposed in [3]), and then fed back to

(18) to form an iterative process. Again it is not difficult to

show that

MSE(ĥDDST) =
σ2

n

NP σ2
c

(19)

MSE(ĥLSDDST) ≃
σ2

n

NP

(

σ2
b+e

+ σ2
c

) (20)

assuming ŜDDST ≃ S in (18). Now from (13) we can observe

that in ST the data acts as interference, whereas in LSST we

effectively remove the interference from the data and even in-

crease the training power as can be seen from (14). Also in

IST (15), we remove the intereference of the data but the train-

ing power remains the same and so it approaches the DDST

performance of (19). Finally we can observe from (20) that

the training power has effectively been increased.
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LSST and LSDDST converge to a fully trained system. Note

that TDM and DDST coincide and so are indistinguishable on

graph.

2.4. Time Division Multiplexed Training

Traditionally, the training sequence was time division multi-

plexed (TDM) with the information sequence. Here we now

compare both training schemes in a simplified scenario. So,

the first question that arises is how to make a fair compari-

sion. We have chosen to force DDST and TDM to provide

the same channel estimation error, and then to compare the

BERs of both methods. Now, it can be easily be shown that

the channel estimation error for TDM is

MSE(ĥTDM) =
M

Nt

σ2
n

σ2
t

(21)

where Nt is the length of TDM training sequence after the

memory of the channel is full. Comparing (21) with (19), then

DDST and TDM will have same channel estimation error if

Nσ2
c

= Ntσ
2
t
, since we have assumed P = M , i.e. the

period of training sequence is equal to the number of taps in

the channel. Note that to estimate the channel under the TDM

scheme the memory of the channel must already be full and

so Nt + M − 1- length training sequence is required with

Nt ≥ M . Finally, note that for DDST, in addition to N data

samples we require (M − 1)- length cyclic prefix. And so

TDM and DDST will have the same MSE(ĥ), but TDM will

use significantly more symbols (Nt+M−1) for training than

DDST uses for its cyclic prefix (M−1)—hence the advantage

of DDST.

3. SIMULATION RESULTS

The results of the simulations are shown in Figures 1–3 for

three-tap Rayleigh fading channels. The channel coefficients

were complex Gaussian, i.i.d. with unit variance. The average

Method
Computational Performance

burden approaches

ST ([1, 2]) O(M2 + M) –

IST
O(3QN)

DDST ([3])
for 2 iterations

LSST ([4])
O(NM2)

Fully trained
for 1 iteration

LSDDST
O(NM2)

Fully trained
for 1 iteration

TDM O(Nt(M
2 + M) + M2) DDST ([3])

Table 1. Summary of the performance and computational

burden of all the methods presented here. Note that M and

N refer to (1); P refers to the period of c(k) in (1); and Q

refers to the MMSE equaliser length; Nt refers to the TDM

training sequence of length Nt + M − 1.

energy of the channel was set to unity. The data was a BPSK

sequence, to which a training sequence fulfilling CCH = Pσ2
c I

was added before transmission. The training to information

power ratio
(

TIR =
σ

2
c

σ2
b+e

)

was set to −6.9798 dB, P = 7

and N = 420 and a linear MMSE equaliser of length Q = 11
taps and optimum delay was used throughout. In order to

make a fair comparison, we have included the results of chan-

nel estimation and BER using the traditional TDM scheme.

The channel estimation performance of the DDST scheme is

the same as that of the TDM scheme (for the reasons previ-

ously described), as is verified in Figures 1 and 2, where the

number of training symbols in the TDM scheme is Nt +M −
1 = 72, compared to the DDST cyclic prefix of M − 1 = 2.

So Figure 1 gives the channel estimation MSE for the IST

algorithm. It can be seen that there is a significant improve-

ment in channel estimation and it approaches normal DDST

and TDM performance just after 2 iterations. Now Figure 2

gives the channel estimation MSE for the LSST algorithm of

[4] along with the proposed LSDDST. It can be seen that there

is an even larger improvement over the normal DDST and that

they both approach the performance of fully trained systems.

Note that our method of LSDDST only requires 1 iteration to

effectively converge as opposed to the LSST method in [4]

that requires 2 iterations. Figure 3 shows the BER perfor-

mance for the proposed IST algorithm along with the TDM

scheme and when the channel is completely known. We can

see that even with the low complexity IST, after two iterations

we get virtually the same BER performance as that obtained

when the channel is completely known for the superimposed

training scheme. Figure 4 shows the BER for the proposed

LSDDST algorithm along with the LSST [4]. Again we can

observe that the performance of LSDDST is similar to the

case when the channel is known completely for superimposed

training scheme as well as to that of LSST [4].

Even the low complexity IST method after two iterations
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gives virtually the same BER performance as one iteration of

LSST and LSDDST. It can also be observed that while the

BER performance of all the proposed methods is very close

to the TDM scheme, the latter however consumes more band-

width. Table 1 gives the summary of the performance and

computational burden of all the methods presented. Note that

the computational burden of 2 iterations of IST is O(3QN)
but with O(NM2) per iteration for both LSST and LSDDST,

yet all have almost the same BER.

4. CONCLUSIONS

In this paper, the symbols equalised via a hard detector pre-

ceded by a linear MMSE equaliser (designed using the chan-

nel estimated from an ST approach) are fed back into the

ST method. As a result, better channel estimates and hence

a more accurate equalisation is possible, which in turn can

be used in the next iteration. The theoretical limiting per-

formance of this iterative ST method (IST) is that of DDST,

which is obtained when good equalisation is possible —long

received records and high SNR. In practice, convergence is at-

tained in two iterations. Another method, but suffering heav-

ier computational burden, was derived by Meng and Tugnait

[4]. Here we re-use the equalised symbols, not in the ac-

tual ST algorithm as in IST, but for a traditional least squares

trained channel estimate (LSST). This LSST method approac-

hes, for long data records and high SNR, the performance

of a fully trained system after two iterations as regards the

channel MSE estimates, and after one iteration as regards the

BER. In this paper we also implemented the previous LSST

with DDST, so that as simulations illustrate, convergence is

achieved after one iteration (for both channel MSE and BER).
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As far as the BER is concerned, simulations have shown that

all the iterative methods considered here have approximately

the same limiting performance. So, due to their computational

burdens it is clear that IST is the algorithm of choice.

One possible application of this work is to use ST on the

uplink (with the base-station performing IST estimation) and

DDST on the downlink. In this scenario, we will have DDST

performance in both directions, but with all the additional

computational burden at the base-station, and not at mobile.
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