Lu, X., Xie, P. orcid.org/0000-0001-7156-7061, Ingham, D.B. et al. (2 more authors) (2019) Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chemical Engineering Science, 199. pp. 302-318. ISSN 0009-2509
Abstract
The rotating packed bed (RPB) is a promising reactor for CO2 capture with liquid amine because of its high mass transfer rate and energy and space savings. The CFD simulations of RPBs generally use the volume of fluid (VOF) method, but this method is prohibitively expensive for 3D simulations, in particular for large-scale reactors. The Eulerian method is a promising and effective method; however, there are still several difficulties, such as the settings for the porous media models in the gas-liquid counter-current flow and the interfacial area between the gas and liquid. To overcome these difficulties in the Eulerian method, this paper uses a new porous media model, a novel liquid generation-elimination model for numerically investigating the gas-liquid counter-current flow in RPBs and a new interfacial area model derived from the VOF simulation. These new models, incorporating the two-film reaction-enhancement mass transfer model, have successfully simulated the CO2 capture process with monoethanolamine (MEA) solutions in a RPB under both low (30 wt%) and high (90 wt%) concentration conditions. The results show that the overall gas phase mass transfer coefficient (KGa) increases with increasing the rotation speeds and the liquid to gas mass flow rate (L/G ratio). The simulations were validated by the experimental data and the results were analysed and discussed.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Elsevier. This is an author produced version of a paper subsequently published in Chemical Engineering Science. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | Rotating packed bed; CFD simulation; CO2 absorption; Liquid amine; Porous media model |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Mechanical Engineering (Sheffield) |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL (EPSRC) EP/M001458/2 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 15 Feb 2019 09:27 |
Last Modified: | 25 Jan 2020 01:39 |
Published Version: | https://doi.org/10.1016/j.ces.2019.01.029 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.ces.2019.01.029 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:142553 |
Download
Filename: CES-modeling of CO2 absorption in a rotating packed bed.pdf
Licence: CC-BY-NC-ND 4.0