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Highlights 

 

 Application of a new porous media model for the gas-liquid flow in a RPB. 

 Closure model of the interfacial area derived from the VOF simulation. 

 Successful Eulerian simulation of CO2 absorption by liquid amine in a lab-scale RPB. 

 

Abstract 

The rotating packed bed (RPB) is a promising reactor for CO2 capture with liquid amine 

because of its high mass transfer rate and energy and space savings. The CFD simulations of 

RPBs generally use the volume of fluid (VOF) method, but this method is prohibitively 

expensive for 3D simulations, in particular for large-scale reactors. The Eulerian method is a 

promising and effective method; however, there are still several difficulties, such as the 

settings for the porous media models in the gas-liquid counter-current flow and the interfacial 

area between the gas and liquid. To overcome these difficulties in the Eulerian method, this 

paper uses a new porous media model, a novel liquid generation-elimination model for 

numerically investigating the gas-liquid counter-current flow in RPBs and a new interfacial 

area model derived from the VOF simulation. These new models, incorporating the two-film 

reaction-enhancement mass transfer model, have successfully simulated the CO2 capture 

process with monoethanolamine (MEA) solutions in a RPB under both low (30 wt%) and 

high (90 wt%) concentrations conditions. The results show that the overall gas phase mass 

transfer coefficient (KGa) increases with increasing the rotation speeds and the liquid to gas 

mass flow rate (L/G ratio). The simulations were validated by the experimental data and the 

results were analysed and discussed.  

Key words: Rotating packed bed, CFD simulation, CO2 absorption, Liquid amine, and Porous 

media model  
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1. Introduction 

CO2 is one of the dominate greenhouse gases and contributes more than 60% to the global 

warming (Halmann and Stenberg et al., 1999). In 2015, among all CO2 emissions from 

human activities, about 41% comes from coal combustion (Shearer et al., 2017) and the coal 

for electricity generation occupies 73% of all the coal consumption in 2015 (U.S. EIA, 2017). 

Therefore, the total power plants in the world contribute up to 30% of the total CO2 emissions. 

Although the restrictions on the utilization of coal has been carried out, the electricity from 

coal combustion still dominates in the world and it contributes about 40% of the electricity 

generated from coal combustion (IEA, 2017) and many coal-fired stations are replaced with 

gas fired power stations. Therefore, the purification and storage of CO2 from the fossil fuel 

combustion power plants is still a current urgent issue.  

The absorption and desorption of CO2 in the post combustion process generally uses liquid 

amine as the sorbents and this method is reasonably mature in comparison with other 

methods, such as solid amine and metal organic frameworks (MOFs). For this process, the 

traditional packed bed (PB) is commonly used, including randomly packed beds and 

structured packed beds and some large demonstration PB facilities have been constructed in 

some countries, such as at FerryBridge in the UK, Plant Barry in the USA or at Shidongkou 

in China. In 2014, SaskPower built the world first commercialized power station that 

successfully uses carbon capture and storage technology in Estevan, Saskatchewan, Canada. 

The absorber for the carbon capture is 20 meters long and 12 meters in diameter and the 

carbon capture facility is capable of capturing up to 1.3 million tons of CO2 per year 

(Saskpower, 2017). The total CO2 capture efficiency reaches up to 90% but the investment 

for the construction of this plant costed up to 1.3 billion US dollars (Oko et al., 2017).  The 

gigantic solvent scrubbers occupy a very large space and high buildings are required to install 

them. The operation of this facility needs to pump large amounts of liquid absorbent to the 



  

4 

 

top of the absorber, therefore high energy costs are involved. In addition to the traditional 

PBs, the hollow fiber membrane contactor (HFMC) is another promising, efficient and 

flexible reactor for CO2 absorption by liquid amine, but the commercial utilization has been 

impeded because of the huge expenditure on membranes for the processing of gigantic 

amounts of CO2 from the power plant and the current membrane still has low permeability, 

low separation factors and low in withstanding high temperatures (Mansourizadeh and Ismail, 

2009).  

A recently developed process intensified reactor, namely the rotating packed bed (RPB), is 

more promising for the application in CO2 absorption and desorption and this is because it 

demonstrates that the RPB could save reactor size and energy, and it has a high efficient 

operation. Under the same process conditions, the RPB has about 9.7 times reactor volume 

reduction compared to the conventional PB (Joel et al., 2017). Further, the total gas phase 

mass transfer coefficient for the RPB is about 1.2 times that for the traditional PB (Jassim et 

al., 2007; Kang et al., 2016). Nowadays, the research on CO2 capture in RPBs has been 

carried out at several establishments, institutes and universities in the world (Zhao et al., 2016; 

Wang et al., 2015).  

In reality, the RPB is a special PB, which is operated under a rotating field, and the 

characteristics of the gas and liquid flow have some similarities with those in the traditional 

PB but have a higher gravity force.  The operation of CO2 absorption in the traditional PB is 

that a CO2 lean amine solution enters the top of the absorber and the flue gas is fed from the 

bottom of the column. The gas and liquid are in contact due to the counter current flow. 

Finally, the CO2 rich solvent flows out of the reactor from the bottom of the column and the 

flue gas is released from the exhaust to the atmosphere at the top of the column (Fitzgerald et 

al., 2014). As discussed above, the RPB is a special mode of PB. The amine solution enters 

the reactor from the inner boundary and leaves from the outer boundary of the bed and the 
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flue gas is fed from the outer boundary and leaves from the inner boundary of the bed. The 

solvent forms a thin film on the surface of the packing, which offers the maximum interfacial 

area in order to allow the CO2 to be absorbed as much as possible. 

    The use of  computational fluid dynamic (CFD) simulations is an effective tool to 

understand the flow behaviour and it can be applied for the future scale-up and optimized 

operation of these commercialized industrial reactors. In comparison with the experiments, 

numerical investigations of CO2 absorption and desorption in post combustion could 

economize the manpower, material resource and time. The CFD simulation of post 

combustion CO2 absorption in PBs/RPBs requires the combination of a flow dynamic, heat 

transfer, mass transfer and reaction models. In most literature on CO2 absorption by liquid 

amine, they share much the same features, and have a similar mass transfer model and a 

reaction mechanism (Sebastia-Saez et al., 2014; Hosseini, et al., 2014). The novelty in these 

published literatures are that the new CFD models that accurately describe the multiphase 

flow in the new reactors. 

Raynal et al. (2009) suggested that the CFD simulation of a multiphase reaction in the PBs 

could be performed via an original multi-scale approach from the liquid film thickness to the 

industrial column dimensions. For example, first model the micro-scale liquid wetting on the 

surface of the packing, then model the mesco-scale liquid film flow on the surface of the 

packing, and finally model the large-scale reactor by considering the PB as a porous bed. 

Generally, two methods, namely the Volume of Fluid (VOF) and Eulerian methods are used 

for modelling the flow dynamics in PBs.  The differences in these two methods are as follows: 

(i) The VOF focuses on modelling the liquid flow locally on the surface of the packing and 

it is suitable for micro-scale local simulations. However, it cannot simulate the whole reactor. 

The reason is that the VOF model requires a very small grid size to capture the droplets and 

film, so it is not suitable to simulate 3D or large pilot scale RPBs due to computer resource 
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limitations and the simulation time limitations. For example, a 3D model for a small RPB rig 

with the inner radius of 30 mm, the outer radius of 160 mm and the axial height of 50 mm 

requires about 1, 071,338 tetrahedral and 26, 190 pyramid grids (Yang et al., 2010) and Guo 

et al. (2017) also suggest about 1.6 million cells in total are required for a 3D wire mesh 

packing for VOF simulations. However, the Eulerian method can simulate the liquid flow 

through the whole bed with the appropriate mesh size and with the low requirement of 

computer resources. 

(ii) The VOF method requires a transient simulation, which takes a much longer time, for 

example, approximately 60 hours running in parallel on a computer cluster, see [19], to 

achieve a simulation time step for 860,000 cells, which only forms part of the RPB reactor. 

However, for most cases, the flow in PBs/RPBs is a steady-state process and the Eulerian 

method can carry out the steady-state simulation and save much more computational time. 

(iii ) The VOF method can achieve a clear liquid surface to the air and does not need a 

special model to obtain the interfacial area whereas the Eulerian method gives a liquid 

fraction in a unit volume and cannot give the interfacial area through the simulation. 

(iv) The VOF method treats the gas and liquid as one phase in the momentum equation and 

the only force considered for the interaction between the gas and liquid is the surface tension. 

In contrast, the Eulerian method treats the gas and liquid as individual phases. The method 

needs the porous media model to describe the flow resistance between the gas or liquid and 

the packing, the gas-liquid drag model and the interfacial area model to estimate the surface 

between the gas and liquid. 

(v) For both methods, the challenge is the complexity of the gas and liquid flow through 

the PBs/RPBs. This is caused by the diversity in the packing patterns and structures. The 

packing materials could be random packing, such as random spheres or structured packing, 
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such as corrugated packing or wire screen packing. The accurate description of the gas or 

liquid flow through a great variety of packings using numerical simulations is very 

challenging.  

    When employing the VOF method on PBs, Raynal et al. (2007) and Sebastia-Saez et al. 

(2014, 2015) modelled the falling film flow and mass transfer locally on the surface of the 

packing on a micro-scale. Iso et al. (2013) compared two geometrical structured surfaces, 

namely smooth and wavy walls, using a CFD-VOF simulation and found that the surface 

texture treatments can assist in preventing the liquid channelling and increase the wetted area. 

All these investigations may give assistance to the simulation of the RPBs. Currently, the 

CFD simulation of the gas-liquid two-phase flow in RPBs only focus on the VOF method and 

the packing wire mesh was treated as being square or circular blocks in the 2D models and 

real structures in 3D models. Shi et al. (2013) developed a 2D multiphase VOF method to 

simulate the liquid flow in a RPB and the interface between the gas-liquid phases was clearly 

achieved. The formation of a film and droplets can clearly be observed from this method 

during transient simulations. Guo et al. (2016) combined the VOF multiphase model, the 

laminar finite-rate model and the Reynolds stress model to simulate the liquid concentration 

distribution and liquid flow velocity on the micromixing performance of a RPB, and the 

micromixing time was estimated to be 0.05 - 0.30 ms. Yang et al. (2016) used this method to 

investigate the liquid holdup and mass transfer of the dissolved oxygen released into the gas 

phase under different rotation speeds and liquid flow rates. Xie et al. (2017) investigated the 

effect of the rotation speed and contact angle on the MEA concentration liquid distribution 

and the formation of the liquid droplets by the VOF method. The difficulty in the VOF 

method for PBs/RPBs is the mesh generation and this is due to the complex packing 

structures. In order to perform the simulation conveniently and easily, and save computer 

memory resources, most researchers simplify the packing structures. For example, the 



  

8 

 

structure packing is simplified to be a tilted board, and the wire screen packing is simplified 

as square/circular blocks for 2D or vertical wires for 3D. However, these simplified structures 

are quite different from the real structures.    

     For the Eulerian method on PBs, Asendrych et al. (2013) and Niegodajew et al. (2016) 

used the porous media model to simulate CO2 absorption by the liquid MEA solution in a 

6mm-Raschig-rings randomly filled PB. Liu et al. (2006a)  developed a turbulent mass 

transfer model for the CFD simulations of CO2 removal using a NaOH aqueous solution in a 

pilot-scale ½inch-ceramic Berl-saddles randomly packed chemical absorption column. For 

the structured PB, Pham et al. (2015) and Kim et al. (2016) used the Iliuta porous media 

model and the Eulerian method to predict the gas and liquid two-phase flow and CO2 capture 

from the flue gas. The number of published papers on the numerical investigation of CO2 

absorption in PBs is very limited and the publications on Eulerian simulations of the 

multiphase flow in the RPB are rare. The only paper that investigates the PRB is a conference 

paper, in which Martínez et al. (2012) used the Eulerian-Eulerian method to simulate the 3D 

gas-liquid flow in a RPB. Øi (2010) presented some challenges for the CFD simulations of 

the CO2 capture by liquid amine and these are (i) unsolved gas/liquid interfacial area; and (ii) 

combination of different models, such as equilibrium and mass transfer, heat transfer and 

reaction models. On the other hand, the setting of the flow to be counter current is another 

difficulty. The boundary setup for the liquid inlet and outlet is challenging because the gas 

inlet and liquid outlet are overlapped and the gas outlet and liquid inlet are overlapped. In 

addition to these challenges, the toughest difficulty of the Eulerian method is how accurately 

the porous media model describes the gas and liquid flow and how the porous media model 

represents the differences in the packing materials. There are three popular porous media 

models in the literature: the Attou model (Attou et al., 1999), based on the spherical packing; 

the Lappalainen model (Lappalainen et al., 2008), based on the spherical packing and 
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wettability factor; and the Iliuta model (Iliuta et al., 2004), based on the structured packing 

and wettability factor.  However, in the RPB, the wire screens are commonly used as the 

packing materials. The current available porous media models are not suitable for the wire 

screen packing.  Up to now, it is still challenging to build a proper porous media model for 

some particular packing structures.  

     It can be seen that the Eulerian method should ideally be chosen for the CFD simulations 

of large pilot-scale RPBs. The purpose of this paper is to demonstrate the potential of 

employing the Eulerian porous media method for the efficient prediction of CO2 absorption 

in a large-scale RPB. However, the difficulties for the Eulerian method in the simulation of 

RPBs are the settings for the counter-current flow, the porous media models and interfacial 

area. Therefore, the novelties of this work are as follows: (i) the application of a new gas-

liquid two-phase porous media for wire screen packing based on the Kołodziej one-phase 

model (Kołodziej and Łojewska, 2009). The Kołodziej model treats the packing wire screens as 

small cylinders and not as traditional spheres and this takes into account the effect of the 

tortuosity on the fluid velocity through the packing; (ii) the interfacial area is derived from 

the VOF simulation of the liquid flow on the real wire screens; (iii) a more advanced reaction 

enhancement model is employed for describing liquid mass transfer; and (iv) the construction 

of the liquid generation and elimination zone to resolve the problem in the setting of the 

counter-current gas-liquid flow in the CFD simulation. 

    Finally, in this work, the CO2 absorption in the RPB has been studied by the use of an 

Eulerian simulation based on the new settings for the gas-liquid counter-current flow, the new 

porous media model and the new interfacial area model. 

2. Rotating packed bed for CO2 absorption using MEA solutions 

 The simulation of CO2 capture by MEA solutions in the RPB has been performed and this 

is based on the experiments in the RPB for CO2 absorption by the liquid amine, which was 
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reported by Lee et al. (2017). A flowchart diagram of the whole process is shown in Fig. 1 

and the dimension of the RPB is 80 mm for the inner diameter, 300 mm for the outer 

diameter and 20 mm for the width of the packed bed. The diameter of a polypropylene case 

for housing the RPB is 360 mm and the packing material is a stainless steel expanded mesh 

screen with a voidage of 0.801 and the surface area of 663 m2/m3.  

      The flue gas is stimulated by mixing air and CO2 in the ratio 12 mol% CO2 and preheated 

to 40 C by a hot water system before entering the chamber cavity housed in a polypropylene 

case for the RPB on two sides through two pipes. After absorption, the gas leaves the RPB 

through the pipe that is connected to the inner boundary of the RPB.  

 

 

Fig. 1. Schematic diagram of the rotating packed bed for CO2 absorption by the liquid amine. 

 

    The MEA solution with a mass fraction of 30% or 90% was first preloaded to 0.1 mol CO2 

/ mol MEA. After that, the liquid was preheated to 40C by a hot water system and then 

sprayed into the RPB from the centre using a 4 armed jet. After flowing through the packed 

wire screen, the liquid was thrown towards the case wall of the RPB and finally it is collected 

by a pipe that is situated at the bottom of the case. 

     The feed gas flow rate is 9.8 litres/s and the liquid to gas mass flow rate ratios are 2.8, 3.3 

and 3.7 for the 30% MEA solutions, and 0.9, 1.0 and 1.2 for the 90% MEA solutions. 
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3. Simulation theory 

    The gas-liquid flow in the RPB investigated is a counter-current flow design. In the 

experimental rig, the RPB is closed in a polypropylene case as shown in Fig. 2(a). The gas 

passes the space between the case shell and the outer edge of the RPB enters into the RPB 

and finally flows out of the reactor through a central pipe. The liquid is sprayed onto the inner 

surface of the RPB and flows out of the RPB. After that, the liquid crosses the chamber 

cavity and finally collects on the wall of the polypropylene case.  

 

Fig. 2. Schematic diagram of the simulated physical model of the rotating packed bed (RPB). 
(a) model of the experimental RPB; (b) model of the simulation. 

    In order to easily perform the simulations, the complex gas swirl flow between the front 

side plate of the packing and the front sidewall of the polypropylene case and between the 

back side plate of the packing and the back sidewall of the polypropylene case are not 

included in this investigation since there is no experimental data available. The gas is 

assumed to enter uniformly through the outer boundary of the RPB. The chamber cavity that 
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is housed by a polypropylene case for the RPB is not considered and included as well. Thus, 

the geometry of the rig, as shown in Fig. 2(a), is simplified into the structure shown in Fig. 

2(b). Because more reactions occur in the RPB, the dimension of the RPB has the same size 

as that in the real experimental rig and the gas outlet region is simplified into the area, which 

extends 10 mm from the inner boundary of the RPB. The simplified geometry represents the 

flow and reaction process in the RPB but omits the flow in the chamber cavity and the 

complex swirl flow between the front side plate of the RPB and the front sidewall of the case, 

and between the back side plate of the RPB and the back sidewall of the case. 

    The liquid flow in the RPB is almost axisymmetrical and this has been demonstrated in the 

experimental investigations (Yang et al., 2015). Thus, in this work, the 2D axisymmetric 

swirl Eulerian model is used to model the gas-liquid two-phase flow in the RPB. The rotation 

of the rig is simulated by the rotating reference frame. It should be noted that for a more 

detailed analysis, full 3D simulations should be performed. 

The assumptions employed for the RPB are as follows: (i) the gas and liquid flows in the 

RPBs are in the steady state; (ii ) the gas is incompressible; (iii ) the liquid is usually sprayed 

into the packing by a number of uniformly distributed nozzles at the entrance to the RPB. The 

splashing of the liquid on the edge of the packing is complex but the liquid becomes 

uniformly dispersed very quickly with the assistance of the packing wires. Therefore, in this 

work,  the liquid is treated as being a uniform flow that enters the packed bed for a given 

liquid flow rate;  the details of the liquid entry region and the effect of the number of liquid 

spraying nozzles on the liquid flowing into the packing are not considered; (iv) once the 

liquid flows out of the packing, it will not have any impact on the flow in the packing. 

Therefore, in order to simplify the simulation, we assume that the liquid disappears 

immediately when the liquid flows out of the packing and reaches the liquid elimination zone; 



  

13 

 

and (v) in the packing region, the liquid flows in the form of films, droplets and rivulets. The 

interfacial area between the gas and liquid can be predicted using the VOF method. 

The liquid flow and mass transfer process in packed beds are in the unsteady state, in 

particular at the micro-scale. For the RPB, when a limited number of liquid nozzles are used, 

it introduces unsteadies in the large scale. For the cases presented in this work, we take the 

view that the unsteadiness of the flow is a secondary phenomenon and the flow can be 

globally treated as being in a quasi-steady state, in particular this is valid when the number of 

the liquid nozzles employed are not too small. Nevertheless, the unsteady flow and mass 

transfer process caused by the limited number of liquid nozzles employed can be simulated 

by full 3D simulations using the same approach as presented in this paper. Further, the micro-

scale unsteady flow and mass transfer process can be further simulated by the LES (Large 

Eddy Simulation) method with appropriate computer power. 

The end effect of the liquid entry section was not included in this work. The liquid is 

usually sprayed into the packing by a number of uniformly distributed nozzles located at the 

entrance to the RPB. The splashing of the liquid on the edge of the packing is complex but 

the liquid becomes uniformly dispersed very quickly with the assistance of the packing wires. 

The liquid entry section is in a very limited region (Yang et al., 2015). Therefore, in this work, 

the liquid is treated as being a uniform flow that enters the packed bed; the details of the 

liquid entry region and the effect of the number of liquid spraying nozzles on the liquid 

flowing into the packed is not considered in detail. We take the view that this will not have a 

significant impact on the overall prediction of the CO2 absorption efficiency of the packed 

bed especially when the size of the bed is large. This is the main aim of the development of 

this model. Furthermore, it is extremely challenging to simulate the very complex liquid 

splashing process at the entrance of the RPB in a counter-current flow configuration. 
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Additional models can be developed to be added on to the present porous media model and 

this is a future work. 

    A schematic diagram of the geometry and boundary conditions employed in the CFD 

simulations is shown in Fig. 2(b). The width of the bed is 20 mm. The distances of the gas 

outlet, liquid generation, inner boundary of the RPB, outer boundary of the RPB and the 

liquid elimination/gas inlet to the x-axis is 38 mm, 39 mm, 40 mm, 150 mm and 151 mm, 

respectively. The left and right sides of the whole bed are the wall boundary. 

3.1 Governing equations 

    The governing equations are as follows: 

    (i) Mass equation: 

 ή ൫ߩݒԦ൯ ൌ ܵǡ       (1) 

     (ii ) Momentum equation: 

 ή ൫ߩݒԦݒԦ൯ ൌ െܲ   ή ൫߬ҧ൯  Ԧௗǡܨ െ Ԧܵ    (2) 

    (iii ) Species transport equation: 

 ή ൫ߩݒԦ ܻ൯ ൌ െ ή ଔԦ  ܴ     (3) 

    (iv) Energy equation: 

 ή ൫ݒԦሺߩܧ  ܲሻ൯ ൌ  ή ቀ݇ǡ ܶ െσ ݄ܬԦ  ൫߬ҧǡ ή Ԧ൯ቁݒ  ܵǡ  (4) 

where,  is the density; vij is the fluid velocity (i = Gas or Liquid; j = the axial (x), radial (r) 

and tangential (z) coordinate direction); Sm,i is the mass source; P is the pressure; ij is the 

stress tensor; Fdrag,j is the drag force; Sij is the momentum source; Yk is the mass fraction of 

the species, such as CO2 in the gas phase or MEA in the liquid phase (k = species); Jkj is the 
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mass diffusion flux; Rk is the production of the species by reaction; Ei is the total energy; keff,i 

is the effective conductivity; hk is the enthalpy of the species; eff,ij is the effective shear tensor; 

and Sh,i is the heat of chemical reaction. 

3.2 liquid generation zone and elimination zone 

    One of challenges for the simulation of the gas-liquid counter-current flow is the boundary 

settings for the liquid inlet and liquid outlet. This is because there are no appropriate available 

boundary designs for the overlapped liquid inlet and gas outlet, and the overlapped liquid 

outlet and gas inlet. In order to overcome this difficulty, two zones for the liquid generation 

and elimination were constructed and the source equations for these two zones are described 

as follows: 

    (i) Liquid generation zone: 

 For the liquid mass source, 

ܵǡ ൌ ொಽఘಽగሺమమିభమሻ     (5) 

where, QL is the volume flow rate of the liquid; r1 and r2 are the radius of the liquid source 

zone; and Z is the thickness of the rotating packed bed. 

    (ii) Liquid elimination zone: 

 For the liquid mass source, 

ܵǡ ൌ െቀఘಽఈಽ௩ೣǡಽ௫  ఘಽఈಽ௩ೝǡಽ  ఘಽఈಽ௩ೝǡಽ ቁ    (6) 

 For the liquid momentum source, 

ܵ௫ǡ ൌ െቀଵ ఘಽఈಽ௩ೣǡಽ௩ೣǡಽ௫  ଵ ఘಽఈಽ௩ೝǡಽ௩ೣǡಽ ቁ    (7) 
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ܵǡ ൌ െቀଵ ఘಽఈಽ௩ೣǡಽ௩ೝǡಽ௫  ଵ ఘಽఈಽ௩ೝǡಽ௩ೝǡಽ ቁ    (8) 

ܵ௭ǡ ൌ െቀଵ ఘಽఈಽ௩ೝǡಽ௩ǡಽ௫  ଵ ఘಽఈಽ௩ೣǡಽ௩ǡಽ ቁ    (9) 

 For the species source, 

ܵ ൌ െቀఘಽఈಽ௩ೣǡಽೕ௫  ఘಽఈಽ௩ೝǡಽೕ  ఘಽఈಽ௩ೝǡಽೕ ቁ    (10) 

 For the energy source, 

ܵǡ ൌ െቀఘಽఈಽ௩ೣǡಽுಽ௫  ఘಽఈಽ௩ೝǡಽுಽ  ఘಽఈಽ௩ೝǡಽுಽ ቁ   (11) 

where, L is the liquid phase fraction; x is the axial size of the cell in the liquid elimination 

zone; r is the radial size of the cell in the liquid elimination zone; Yj is the mass fraction of 

species; and HL is the enthalpy of the liquid phase. 

3.3 Porous media model 

There are some porous media models for the gas-liquid two-phase flows in traditional 

packed beds, such as the Attou and the Iliuta models (Lu et al., 2018). The Attou model is 

derived from the spherical packings and the Iliuta model is derived from the structured-slit 

packings. However, the commonly used packings for the RPB are wire screens. The 

characteristics of the gas and liquid flows in these packings are different from those of 

traditional packings. Therefore, another challenge for the simulation using the Eulerian 

method is an appropriate porous media model for the RPBs. This is why there are very few 

publications for CFD simulation of multiphase reactions in RPBs. In this paper, a new porous 

media model for the RPBs, which has been previously constructed (Lu et al., 2018), is 

employed.  
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Fig. 3. Schematic diagram of the porous media model based on wet and dry wires. 

 

    The gas-liquid two-phase porous media model is derived from the Kołodziej one-phase 

model (Kołodziej and Łojewska, 2009). In order for this one-phase model to accommodate 

the gas-liquid two-phase flow, the concepts of wet wires and dry wires are introduced in this 

work. Thus, the surface of the packing is divided into a wet area, where the liquid flows 

through, and a dry area, where the gas crosses as shown in Fig. 3. Thus, the flow resistance 

for the liquid and gas can be derived from the one-phase flow resistance based on the 

Kołodziej equations, namely. ܵௌ ൌ ݂ߝ ቂͶ൫ ݂  ௧݂൯ ఘಽ௩ಽమଶௗೢ ఌೄఌಽయ ఛయୡ୭ୱయ ఏቃ    (12) 

ܵீௌ ൌ ሺͳ െ ݂ሻீߝ ቂͶ൫ ݂  ௧݂൯ ఘಸ௩ಸమଶௗೢ ሺଵିఌಸሻఌಸయ ఛయୡ୭ୱయ ఏቃ   (13) 

݂ ൌ ଵோ಼൮ଷǤସସඥఞశ  భǤమఱరഖశାଵିయǤరరටഖశଵାబǤబబబమభഖశమ ൲    (14) 

௧݂ ൌ Ǥଽோ಼బǤమఱ      (15) 
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߯ା ൌ ௗೢோ಼      (16) 

ܴ݁ ൌ ఘ௩ఓ       (17) 

   For the gas-solids interaction: 

ɒ ൌ ͳ  ఌೄଶ , ݀ ௪ ൌ ସఌೄೄ ݒ , ൌ ௩ఌಸ ఛୡ୭ୱሺఏሻ, ܦ ൌ ସఌಸೄ    (18) 

    For the liquid-solids interaction: 

ɒ ൌ ͳ  ఌೄଶ , ݀ ௪ ൌ ସఌೄೄ ݒ , ൌ ௩ఌಽ ఛୡ୭ୱሺఏሻ, ܦ ൌ ସఌಽೄ    (19) 

where, SLS and SGS are the resistances of the porous media for the liquid and gas phase; fe is 

the fraction of the wetted area of the packing; İL and İG are the volume fraction of the liquid 

and gas phase; fapp is the fanning factor for laminar flows; ft is the Fanning factor for turbulent 

flows; dw is the wire size;  is the tortuosity factor of the packing; Dh is the hydraulic 

diameter; ReK is the Reynold number; ve is the effective velocity;  is the viscosity; aS is the 

specific area of the dry packing; and  = 60, which is estimated for the investigated packing 

structure and liquid flow (Lu et al., 2018). 

    The current porous media model is derived from only film flow. In fact, the film and 

droplets all exist in the porous media zone but the droplets are restricted by the wire mesh 

and interact with the film and the derived model is shown to be able to be extended for flows 

with a film and restricted droplets (Lu et al., 2018).  

3.4 Gas-liquid drag model 

In our previous work, we deduced FGL as the drag force between the gas and liquid (Lu et 

al., 2018). The drag model is given by 

ீܨ ൌ ݂ீߝ ቂͶ൫ ݂  ௧݂൯ ఘಸሺ௩ಸି௩ಽሻమଶௗᇱೢ ሺଵିఌಸሻఌಸయ ߬ଷቃ    (20) 
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ɒ ൌ ͳ  ఌೄାఌಽଶ , ݀ Ԣ௪ ൌ ସఌೄᇱೄ, ݒ ൌ ௩ఛఌಸ, ܦ ൌ ସఌಸᇱೄ     (21) 

ܽԢௌ ൌ ቀఌಽାఌೄఌೄ ቁభమ ܽௌ      (22) 

 where FGL is drag force between the gas and liquid; aƍS is specific area of the wet wires; dƍw 

is wire and liquid film diameter. 

3.5 Wire wettable fraction and interfacial area 

In this work, the wire wettable fraction is assumed to be equal to the fraction of the 

interfacial area to the total area of the dry packing. Munjal et al. (1989b) and Luo et al. (2012) 

investigated the interfacial area between the gas and liquid in the RPBs. However, the derived 

correlations from these literatures are not suitable for general applications in the RPBs. The 

most general used correlation of the interfacial area in the RPB is the Onda equation (Tung 

and Mah, 1983; Liu et al., 1996; Tan and Chen, 2006; Joel et al., 2017). However, the Onda 

equation was originally obtained from measuring the absorption of CO2 in the NaOH solution 

in the traditional packed beds. Therefore, there are still some controversial questions on how 

to properly define the variables in the Onda equation to fit the conditions of the RPB, e.g. the 

gravity, g in the traditional packed bed becomes the rotation acceleration, gc in the RPB.  In 

addition, the Onda equation has not been carefully examined by the experiments in the RPBs. 

Throughout our simulations, it is found that the results of the CO2 absorption by liquid amine 

is very sensitive to the interfacial area and therefore the accurate equation for the prediction 

of the interfacial area is requested. 
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Fig. 4. VOF simulation of the liquid flow through the packing used in the real experiments. (a) 

packing mesh; (b) 3D model of the packing; and (c) modelled liquid flow through the 
packing. 

    

In order to achieve the reasonable and correct interfacial area in this work, we simulated 

the local liquid flow on the packing meshes used in the experiments by the VOF method as 

shown in Fig. 4. From the simulation, the correlation for the effective interfacial area under 

the real experimental conditions in the RPB is obtained and given by Eq. (23) in Xie et al. 

(2018).  

ீܣ ൌ ʹͲʹǤ͵ͶͺͷቀభቁǤସଷହ ቀ భቁǤସଶହ ቀ ఔఔభቁǤଵଶ ቀ ఊఊభቁିǤହ଼ହ  (23) 

where, g1 = 205.6 m/s2, U1 = 0.0106 m/s, 1 = 3.3510-6 m2/s and 1 = 75; gc is the rotation 

acceleration; U is the superficial liquid velocity; and  is the dynamic contact angle. In this 

work, the dynamic contact angle,  = 18, means that the liquid easily spreads and contacts on 

the surface of the packing under the bed rotations (Sebastia-Saez et al., 2018; Xie et al., 2018). 

  The fraction of the interfacial area to the total area of the dry packing or the wet area to the 

total packing area is given by 

݂ ൌ ಸಽೄ      (24) 
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Considering the increment of the interfacial area from the wall next to the packing, the 

interfacial area in the wall region is estimated as follows:  

ǡ௪ீܣ ൌ ൫ܣ௪ ݂  ܽௌ ݂ ܸǡ௪൯ ൌ ቀ ଵ௫ೢ  ܽௌቁ ݂   (25) 

where, the wet fraction of the wall is assumed to be the same as that in the packing region; Aw 

is the wall surface area in the cell next to the wall; Vcell,w is the volume of the cell next to the 

wall; and xw is the axial size of the cell next to the wall. 

3.6 Mass transfer 

    For CO2 absorption by the liquid amine, the mass transfer of CO2 from the gas phase to the 

liquid phase was estimated using the following: 

݉ீǡைమ ൌ ݇ீீܣ൫ߩǡைమכ െ  ǡைమ൯    (26)ߩ

where, mGL,CO2 is the transferred CO2 mass between the gas phase and liquid phase; kGL is the 

total mass transfer coefficient through the gas phase and liquid phase; L,CO2* is the CO2 

concentration on the surface of the liquid; and L,CO2 is the CO2 concentration in the liquid 

bulk flow. 

    The two-film model was used to estimate the mass transfer coefficient between the gas and 

the liquid, namely 

ଵಸಽ ൌ ோ்ுೀమషಾಶಲಸ  ଵಽ    (27) 

where, R is the gas constant; T is the temperature; HCO2-MEA is the Henry constant; kG is the 

mass transfer coefficient in the gas phase; and kL is the mass transfer coefficient in the liquid 

phase. 
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 The liquid and gas mass transfer coefficients for the RPBs have been extensively 

investigated by many researchers. Munjal et al. (1989a) used the penetration theory and the 

complete convection diffusion model to predict the gas-liquid and liquid-solid mass transfer 

coefficients in the RPBs. Guo et al. (1997) used the NH3 absorbed by water and SO2 absorbed 

by the ammonium sulphite solution to investigate the mass transfer coefficients of the gas 

phase and liquid phase in the RPB. Chen et al. (2005a; 2005b; 2006) obtained correlations of 

the mass transfer coefficient for the liquid phase through the experiments in which the 

dissolved oxygen in the RPB was measured. Rajan et al. (2011) and Luo et al. (2012) used 

the absorption of CO2 in the aqueous NaOH and investigated the interfacial area and liquid 

mass transfer coefficient. Zhao et al. (2014) summarized the mass transfer systems and 

different correlations for liquid mass transfer coefficients and gas mass transfer coefficients 

in the RPBs. There are numerous semi-empirical correlations based on different reaction and 

packing systems. However, these equations suffer from poor generalization performance 

(Zhao et al., 2014). Therefore, the mass transfer coefficients for the gas and liquid phase from 

these literatures are not applied in this work.  

In this work, the Hughmark model (Fluent, 2013) was employed for the mass transfer 

coefficient in the gas phase because this model can predict the mass transfer coefficient for a 

wider range of relative Reynolds numbers. The mass transfer coefficient between the gas and 

liquid is dominated by the mass transfer in the liquid. Therefore, the mass transfer model for 

the gas phase does not significantly influence the results.   

For the mass transfer coefficient in the liquid phase, the second-order irreversible 

enhancement model is used because the CO2 absorption can be simplified as a second-order 

irreversible reaction. The reasons are (i) the CO2 absorption reaction is a Zwitterionic 

mechanism. The CO2 reaction rate is ݎைమ ൌ െ మሾொሿሾைమሿଵା ೖషభೖ್ሾಾಶಲሿ , but 
షభ್ሾொሿ ا ͳ. Therefore, the 
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CO2 reaction rate can be estimated by ݎைమ ൌ െ݇ଶሾܣܧܯሿሾܱܥଶሿ. Therefore, this reaction can 

be simplified as the second-order irreversible reaction for describing the CO2 absorption 

process; (ii) this simplification can make the simulation much easier without losing the 

prediction accuracy at the temperature range for CO2 absorption; (iii) this simplified method 

has been extensively employed in the simulations of the CO2 absorption (Hosseini et al., 2014; 

Sebastia-Saez et al., 2014; Niegodajew and Asendrych, 2016). 

The second-order irreversible enhancement model is given by 

݇ ൌ  (28)      כ௫݇ܧ

where, Ex is the enhancement factor. 

    Here, we assume the film theory as mass transfer process in the liquid. The mass transfer 

coefficient in film theory, kL*, is given by: 

݇כ ൌ ಽǡೀమκ       (29) 

where, DL,CO2 is the diffusivity of CO2 in the liquid phase; and κ  is the diffusion layer 

thickness for mass transfer.  

In the literature (Levich, 1962), the diffusion layer thickness for the rotating disk has been 

found to be a function of the diffusivity, kinematic viscosity of the liquid and the angular 

velocity of the RPB, i.e. Mooney et al. (1981) estimated the values of the diffusion layer 

thickness as being 1.67 - 2.2910-3 cm for the dissolution of the solid Benzoic acid, 2-

Naphthoic acid and Indomethacin in the KCL solutions for rotational speeds up to 900 rpm. 

Jeannot and Cantwell (1997) measured the extraction of the 4-MAP from water into n-Octane 

with different stirring rates and obtained 1.6910-3 cm for the stirring rate of 900 rpm and 

1.2410-3 cm for the stirring rate of 1200 rpm. Wegner (2017) presented an example of CO2 

being scrubbed by water flowing through a packed bed and the diffusion layer thickness is 
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7.610-3 cm. Thus it can be seen that the diffusion layer thickness changes with different 

liquid viscosities and rotating speeds but the range in the diffusion layer thicknesses is limited 

from 1.010-3 cm to 8.010-3 cm. 

In order to examine the effect of the diffusion layer thickness on the CO2 absorption, we 

compared the CO2 mass fraction at the gas outlet under different diffusion layer thicknesses 

(1.010-3 cm, 5.010-3 cm and 8.010-3 cm) for the 30% MEA solution and 90% MEA 

solution at the rotation speed of 850 rpm. For the 30% MEA solution, the mass fraction of 

CO2 at the gas outlet is 0.135928, 0.135951 or 0.135974 and for the 90% MEA solution, the 

mass fraction of CO2 at the gas outlet is 0.135199, 0.135201 or 0.135204, respectively, for 

the diffusion layer thickness of 1.010-3 cm, 5.010-3 cm or 8.010-3 cm. This shows that the 

CO2 absorption is not sensitive to the diffusion layer thickness. Therefore, the diffusion layer 

thickness of 5.010-3 cm is employed for all the cases investigated. Nevertheless, in the 

modelling, the diffusion layer thickness can be set as a variable if required by the simulation. 

    The enhancement factor is given by (Wellek et al., 1978): 

௫ܧ ൌ ͳ ሺሺܧ െ ͳሻିଵǤଷହ  ሺܧଵ െ ͳሻିଵǤଷହሻି భభǤయఱ   (30) 

ܧ ൌ ͳ  ಽǡಾಶಲಽǡಾಶಲଶಽǡೀమಽǡೀమ      (31) 

ଵܧ ൌ ு௧ሺுሻ       (32) 

ܽܪ ൌ ටమಽǡೀమಽǡಾಶಲሺಽכሻమ       (33) 

where, CL,MEA and CL,CO2 are the mole concentrations of MEA and CO2 in the liquid phase; 

Ha is the Hatta number; and k2 is the reaction rate constant. 

    The CO2 saturation concentration on the liquid surface is given by: 
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כǡைమߩ ൌ ௪ǡைమܯ ೀమுೀమషಾಶಲ     (34) 

where, Mw,CO2 is the molar mass of CO2; HCO2-MEA is the Henry constant of CO2 in the MEA-

water solution; and PCO2 is the partial pressure of CO2 in the gas phase. 

    The Henry constant was estimated by the N2O analogy method (Penttilä et al., 2011) as 

follows: 

ைమିொܪ ൌ ேమைିொܪ ൬ுೀమுಿమೀ൰௪    (35) 

where, HN2O-MEA is the Henry constant of N2O in the MEA-water solution; HCO2 is the Henry 

constant of CO2 in water; and HN2O is the Henry constant of N2O in water. 

The diffusivity of CO2 in the MEA solution was estimated by the N2O analogy method 

(Liu et al., 2006b) as follows: 

ǡைమܦ ൌ ǡேమைܦ ൬ೀమಿమೀ൰௪     (36) 

 The diffusivity of the MEA molecules in the MEA solution is given by Snijder et al. (1993) 

as follows: 

ǡொܦ ൌ ݔ݁ ቀെͳ͵Ǥʹͷ െ ଶଵଽ଼Ǥଷ் െ ͲǤͲͺͳͶʹܥǡொቁ   (37) 

3.7 Heat transfer 

        The transferred heat between the gas and the liquid is given by 

ܳǡீ ൌ ݄ீீܣሺܶீ െ ܶሻ    (38) 

where, Qh,GL is the transferred heat between the gas and liquid; hGL is the heat transfer 

coefficient; AGL is the interfacial area between the gas and liquid; and TG and TL are the 

temperatures of the gas and liquid, respectively.  
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   There are very few publications reporting the heat transfer in the RPBs. In this work, the 

Hughmark model (Hughmark, 1967) was used for predicting the heat transfer coefficient 

between the gas and the liquid, hGL, as follows: 

݄ீ ൌ ಽே௨ಸௗ       (39) 

ீݑܰ ൌ ʹǤͲ  ͲǤܴ݁ீభమܲݎభయ Ͳ  ܴ݁ீ ൏ ǤͲǡͲ  ݎܲ ൏ ʹͷͲ  (40) 

ீݑܰ ൌ ʹǤͲ  ͲǤʹܴ݁ீǤଶܲݎభయ ǤͲ  ܴ݁ீ ǡ Ͳ  ݎܲ ൏ ʹͷͲ (41) 

where, dp is the equivalent diameter of the liquid droplet; L is the thermal conductivity of the 

liquid phase; NuG is the Nusselt number of the gas phase; and PrL is the Prandtl number of 

the liquid phase. 

The wall of the RPB is treated as being adiabatic. 

3.8 Reaction model 

The absorption of CO2 by MEA can be described by the Zwitterionic mechanism with two-

step reactions (Ma et al. 2015; Wang et al., 2013). The first step is to form a Zwitterion as an 

intermediate and the second step is for the Zwitterion to react with a base, such as a MEA, to 

deprotonate. The two-step reactions are given as follows: 

 

    The CO2 reaction rate is given by: ݎைమ ൌ െ మሾொሿሾைమሿଵା ೖషభೖ್ሾಾಶಲሿ      (42) 
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where, r is the reaction rate; k2, k-1 and kb are the reaction rate constant; [MEA] and [CO2] are 

the molar concentration. 

    The total reaction is given by: 

  (43) 

    The CO2 reaction with the MEA can be treated as a second-order irreversible reaction 

because  
షభ್ሾொሿ ا ͳ and the CO2 reaction rate can be simplified as follows: ݎைమ ൌ െ݇ଶሾܣܧܯሿሾܱܥଶሿ     (44) 

This simplified reaction has been extensively used in the simulation of CO2 absorption by 

the liquid amine (Hosseini et al., 2014; Sebastia-Saez et al., 2014; Niegodajew and 

Asendrych, 2016). In this work, the formation enthalpies of HOC2H4NH3
+ and 

HOC2H4NHCOO- are derived from the literature (Mishra, 2014). 

    In this work, we used the equation for the reaction rate constant,  

݇ଶ ൌ ͶǤͶ ൈ ͳͲଵଵ݁ݔ ቀെ ହସ் ቁ    (45) 

which was proposed by Verstege et al. (1996) and it has been used by Hosseini et al. (2014). 

Aboudheir et al. (2013) reviewed the reaction rate constant for the CO2 absorption by the 

MEA from different experiments, e.g. Hikita et al. (1977), Verstege et al. (1996) and Horng 

and Li (2002). Many simulations on CO2 absorption by MEA solutions have used the Hikita 

reaction rate constant (Pham et al., 2015; Sebastia-Saez et al., 2015; Niegodajew and 

Asendrych, 2016). Actually, these obtained reaction rate constants for the CO2 absorption by 

the MEA are very similar. 

4 Simulation conditions and method 
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During the simulations, the gas phase consists of CO2 and air and the liquid phase is 

composed of CO2, MEA (HOC2H4NH2), MEAH+ (HOC2H4NH3
+), MEACOO- 

(HOC2H4NHCOO-) and water. The properties of the materials and the operating conditions 

are shown in Table 1. According to the literature (Amundsen et al., 2009), the density of the 

MEA solutions change very slightly with the variations in the temperature but the viscosity is 

very sensitive to the temperature. Therefore, in the simulation, the liquid density is assumed 

to be constant and the correlation of the viscosity with the temperature was achieved from the 

data presented in the literature (Amundsen et al., 2009). 

The properties of the phases, such as the thermal conductivity, specific heat for the liquid 

or gas phases are all estimated by the mixing law based on the different species in each phase. 

In the experiment, both the 30% and 90% MEA solutions were preloaded to 0.1 mol CO2/mol 

MEA before the absorption of CO2 in the flue gas. In the simulations, we assumed that the 

preloaded CO2 in the liquid phase all reacted with the MEA and finally formed MEAH+ and 

MEACOO- in the solution. 18 cases based on different L/G mass ratios, e.g. L/G = 2.8, 3.3, 

3.7 for 30% MEA, L/G = 0.9, 1.0, 1.2 for 90% MEA and different rotation speeds, e.g. 600, 

850, 1150 rpm were simulated in this work. The swirl velocity at the gas inlet is assumed to 

have the same rotation speed as in the packing region and does not consider the gas 

acceleration along the tangential direction because the gas inlet is very close to the outer 

boundary of the packing. Thus, the gas inlet boundary is set as the inlet velocity vr  = 0.5167 

m/s and the inlet temperature of 313.2 K and the gas outlet boundary is set as the pressure-

outlet. The liquid is generated from the liquid generation zone and the temperature is fixed at 

313.2 K. Finally, the liquid disappears in the liquid elimination zone. The wall boundary is 

set as the no slip and adiabatic wall. The mesh cell size is 0.25 mm (length) × 0.01 mm 

(width). 
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Table 1 
Properties of the phases and the operating conditions for the simulations. 
Properties of phases Settings Conditions Settings 
Density of gas phase Incompressible ideal 

gas 
Gas flow rate 9.8 l/s 

Density of liquid 
phase 

1003.4 kg/m3 for 30% 
MEA* 
1000.6 kg/m3 for 90% 
MEA* 

Liquid/Gas mass flow 
rate ratio (L/G) for 
30% MEA     

2.8, 3.3, 3.7 

Viscosity of gas phase Mixing law 
 

Liquid/Gas mass flow 
rate ratio (L/G) for 
90% MEA     

0.9, 1.0, 1.2 

Viscosity of liquid 
phase 

0.3 for 30% MEA*† 
0.9 for 90% MEA*‡ 

Initial temperature for 
gas inlet 

313.2 K 

Specific heat of gas 
phase 

Mass weighted mixing 
law 

Initial temperature for 
liquid inlet 

313.2 K 

Specific heat of liquid 
phase 

Mass weighted mixing 
law 

Gas outlet Pressure outlet, 
Pout = 0 Pa 

Thermal conductivity 
of gas phase 

Mass weighted mixing 
law 

Wall boundary No slip wall 
Adiabatic wall 

Thermal conductivity 
of liquid phase 

Mass weighted mixing 
law 

Mass fraction in the 
gas phase 

CO2: 0.1697 
Air: 0.8303 

Mass diffusivity of gas 
phase 

Kinetic theory Mass fraction in the 
liquid phase for 30% 
MEA solution 
(after preloaded CO2: 
0.1 mol CO2/1 mol 
MEA) 

CO2: 0.0 
MEACOO-: 0.0501 
MEAH+: 0.0298 
MEA: 0.2349 
H2O: 0.6852 

Mass diffusivity of 
liquid phase 

Kinetic theory Mass fraction in the 
liquid phase for 90% 
MEA solution 
(after preloaded CO2: 
0.1 mol CO2/1 mol 
MEA) 

CO2: 0.0 
MEACOO-: 0.1441 
MEAH+: 0.0859 
MEA: 0.6761 
H2O: 0.0939 

* From the literature (Amundsen et al., 2009)  
Ǥଷߤ † ൌ ͲǤ͵Ͳͺ͵ െ ͲǤͲͲʹʹܶ  ǤͶͺͺʹ ൈ ͳͲିܶଶ െ Ǥͳʹͻ͵ ൈ ͳͲିଽܶଷ (Pas)  
Ǥଽߤ‡ ൌ ͶǤ͵ͳͳ െ ͲǤͲ͵ܶ  ͳǤͲͺͻͶͷ ൈ ͳͲିସܶଶ െ ͳǤͲͷͲ͵ͳ ൈ ͳͲିܶଷ (Pas) 
  ʹ ͻͺ    ͵ͷ͵  

 

       The uncertainties associated with the experimental results may bring the discrepancy 

between the simulation and experiments. These uncertainties are (i) the CO2 concentration is 

measured at the gas inlet and outlet pipes and it is not measured directly from inside the 

packed bed. The influence of the residence time on the separation between the gas and liquid 

on the absorption is not known; (ii) the complex gas-liquid vortex flow in the space between 

the front sidewall of the case and front side plate of the packing, and the space between the 



  

30 

 

back sidewall of the case and back side plate of the packing introduces some uncertainties in 

the CO2 absorption results; (iii) the gas and liquid flows in the cavity are very complex. The 

liquid flows as a wide range of droplets with different sizes. The gas forms the free vortex 

and this causes the reaction uncertainties; (iv) in the liquid entry region, the liquid is sprayed 

onto the packing almost uniformly but this may not completely uniformly enter into the bed 

because of the limitation of the nozzle number. 

The simulation details can be found in the publication (Lu et al., 2018). The 2D 

axisymmetric laminar flow model is used for the CFD simulation of the RPB. For the 

Kołodziej flow resistance equation, the “laminar flow” means the viscous flow corresponding 

to the viscous part of the flow resistance equation; the “turbulent flow” means the inertial 

flow corresponding to the inertial part of the flow resistance equation. From the view of fluid 

mechanics, the flow regimes for porous media are: (i) Re ≤ 1, creeping or Darcian regime; (ii ) 

1 < Re < 500, nonlinear-laminar or viscous-inertial regime; (iii) Re ≥ 500, turbulent regime 

(Hlushkou and Tallarek, 2006). For the cases investigated in this work, ReL is about 2.2, thus 

indicating the nonlinear laminar flow or the viscous-inertial regime. Thus in the CFD 

simulations, we have used the laminar model to simulate the flow and the flow resistance 

equation employed includes both the viscous and inertial contributions. The porous 

formulation is based on the superficial velocity. For the solver, the pressure based method 

and the relative velocity formulation were employed. During the simulations, the COUPLE 

method was employed. The second-order upwind discretisation schemes were used for the 

momentum, swirl velocity and all the species equations and the QUICK discretisation scheme 

was used for the volume fraction equation.  The convergent conditions are that the residuals 

for all the equations are less than 1×10-3 and all the residuals reach stable and do not change. 

A mesh independence has been checked based on the meshes of 50113, 100226, 150339 
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and 200452, and the pressure deviation is within 0.2%. The simulation software employed is 

Fluent 16.1.0. 

5 Results 

5.1 Liquid holdup 

The characteristics of the liquid holdup distribution is one of main physical behaviours for 

the gas-liquid two-phase flow in the RPB. The liquid holdup is defined as follows: 

݄ ൌ ಽೝೌೝ ൌ       (46)ߙߝ

where VL is the volume of the liquid in the bed; Vreactor is the volume of the reactor; İ is the 

porosity of the packed bed; ĮL is the liquid phase fraction. 

The contours of the liquid holdup in the bed and the liquid holdup distribution curves along 

the radial direction on the centreline of the bed are shown in Fig. 5. Figs. 5(a) and 5(b) are the 

contour figures for the 30% MEA and 90% MEA solutions, respectively, and all these show 

distributions along the axial and radial directions. Fig. 5(c) shows the detailed liquid holdup 

distributions of the 30% and 90% MEA solutions along the bed centreline in the radial 

direction.  

    It can be seen from Fig. 5 that in the packing region, the liquid holdup decreases with the 

radial distance from 0.022 (30% MEA) or 0.014 (90% MEA) at the inner boundary of the 

liquid source to 0.003 (30% MEA) or 0.002 (90% MEA) at the outer boundary of the packing. 

Fig. 5(c) shows that the liquid holdup for the 30% MEA is higher than that for the 90% MEA. 

The reason is that during the simulations and experiments, the gas volume rate is fixed at 9.8 

litres/s and thus, the liquid inlet velocity for the 30% MEA solution with L/G = 3.3 is higher 

than that of the 90% MEA solution with L/G = 1.0. 
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Fig. 5. Contours of the liquid holdup (a) 30% MEA, L/G = 3.3, n = 850 rpm; (b) 90% MEA, 
L/G = 1.0, n = 850 rpm, and the liquid holdup as a function of radial position for the different 

MEA solutions; and (c) along the bed centreline in the radial direction. 

 

    Next, we focus on the liquid holdup distribution in the RPB. In order to compare the 

simulation results with the experimental data, the Burns correlation (Burns et al., 2000) is 

used. Generally, the rotating packed bed uses a very high porosity of wire packing (generally 

more than 80%). Therefore, the Burns correlation treats the influence of the porosity on the 

liquid holdup very briefly and the influence of the porosity is not considered in the 

correlation. However, the Burns correlation is widely accepted by many researchers and it is 

used in the process simulations (Kang et al., 2014; Joel et al., 2017). The Burns experimental 

correlation (Burns et al., 2000) for the liquid holdup is given by 

݄ ൌ ͲǤͲ͵ͻ ቀబቁିǤହ ቀ బቁǤ ቀ ఔఔబቁǤଶଶ    (47) 

where g0 = 100 m/s2; U0 = 1 cm/s; v0 = 1 cS; hL is the liquid holdup; gc is the rotation 

acceleration; U is the superficial velocity; and  is the kinematic viscosity. 
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Fig. 6. Comparison of the liquid holdup between the simulation and the Burns correlation 
(Burns et al., 2000). 

     

    A comparison of the liquid holdup between the simulation results and the Burns correlation 

is shown in Fig. 6. Figs. 6(a) and 6(c) show that the liquid holdup for the 30% and 90% MEA 

solutions under different rotation speeds of 600, 850 and 1150 rpm. Figs. 6(b) and 6(d) show 

the liquid holdup for the 30% and 90% MEA solutions under different L/G ratios.  

Fig. 6 indicates that for both the simulations and the experiments, with increasing the 

rotation speed, the liquid holdup decreases; with increasing the L/G ratio, the liquid holdup 

increases. This is because the gas flow rate is fixed at 9.8 litres/s and the higher L/G ratio 

gives rise to a higher liquid inlet velocity. It is found that when the liquid enters the packing 

area, the liquid holdup predicted by the CFD is close to the Burns correlation. For example, at 

the inner boundary of the RPB (r = 0.04 m), the liquid holdup with 30% MEA (L/G = 3.3, n 

= 850 rpm) are 0.0219 and 0.0213 for the simulation and the Burns correlation values, 
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respectively, and thus the relative standard deviation for the simulation is about 2.8%. At the 

same radial position, the liquid holdup of 90% MEA (L/G = 1.0, n = 850 rpm) are 0.0149 and 

0.0138 for the simulation and the Burns correlation values, respectively, and the relative 

standard deviation is about 8.0%. In the regions near the packing outer boundary, the 

predicted values are lower than the Burns correlation values. For example, at the outer 

boundary of the RPB (r = 0.015 m), the liquid holdup with 30% MEA (L/G = 3.3, n = 850 

rpm) are 0.0032 and 0.0050 for the simulation and the Burns correlation values, respectively, 

and the relative standard deviation is 36.0%. At the same position, the liquid holdup with 90% 

MEA (L/G = 1.0, n = 850 rpm) are 0.0018 and 0.0032 for the simulation and Burns 

correlation values, respectively, and the relative standard deviation is about 43.8%. If the 

error is given by (Lu et al., 2016), 

௦ߜ ൌ ටσ หಽǡೞିಽǡೣหమసಿసభටσ ಽǡೣమసಿసభ      (48) 

then the errors are 16.4%, 15.8% and 15.3% for the 30% MEA solution (L/G = 3.3) under the 

rotation speeds of 600 rpm, 850 rpm and 1150 rpm, respectively, and the errors are 19.0%, 

15.8% and 14.2% for the 30% MEA solution (n = 850 rpm) under the rotation speeds of L/G 

= 2.8, 3.3 and 3.7 respectively. The errors are 20.8%, 20.5% and 20.3% for the 90% MEA 

solution (L/G = 1.0) under the rotation speeds of 600 rpm, 850 rpm and 1150 rpm 

respectively, and the errors are 22.5%, 20.5% and 17.7% for the 90% MEA solution (n = 850 

rpm) under the rotation speeds of L/G = 0.9, 1.0 and 1.2, respectively. In summary, most 

errors are within 25%.  

For all the cases investigated, the simulated flow behaviours agree with the experimental 

observations and the predicted liquid holdup matches the Burns correlation. In conclusion, it 

has been demonstrated that the CFD simulations presented in this work is reasonable and 

effective for predicting the flows in the RPBs. 
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5.2 CO2 absorption 

The interfacial area and the mass transfer coefficient are two key factors influencing CO2 

absorption. Fig. 7(a) shows the variation of the interfacial area calculated by Eq. (23) with the 

radial position for the 30% MEA and 90% MEA solutions. It indicates that the interfacial 

area of the 30% MEA solution is larger than that of the 90% MEA solution, and this is due to 

the higher liquid flow rate for the 30% MEA solution. Fig. 7(b) shows the variation of the 

mass transfer coefficient calculated by Eq. (27) with the radial position for the 30% MEA and 

90% MEA solutions. In the bed region of r = 0.040 - 0.065 m, the mass transfer coefficient of 

90% MEA is lower than that of the 30% MEA. This is because the high concentration MEA 

has higher viscosity and lower diffusivity than the low concentration MEA solution, which 

causes the lower mass transfer coefficient. However, the gradient of the mass transfer 

coefficient for the 90% MEA solution is much higher than that for the 30% MEA solution, 

and this is due to the much higher predicted enhancement factor in Eq. (30), which is the ratio 

of the chemical absorption flux to the physical absorption flux. The enhancement factor has a 

positive relationship with the MEA solution and k2 due to the higher temperature, which is 

caused by the release of reaction heat. Therefore, the higher amount of CO2 absorbed by the 

90% MEA solution in the RPB is attributed to the higher enhancement factor. In the bed 

region of r = 0.130 - 0.150 m, the mass transfer coefficient of the 90% MEA solution slightly 

decreases due to the decrease of the liquid temperature caused by the heat exchange between 

the liquid phase and gas phase. 
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Fig. 7. Mass transfer as a function of the radial position for the different MEA solutions along 
the bed centreline in the radial direction. (a) interfacial area, AGL; and (b) mass transfer 

coefficient, kGL. 

 

 

Fig. 8. Contours of the CO2 mass fraction in the gas phase (a) 30 % MEA, L/G = 3.3, n = 850 
rpm; (b) 90 % MEA, L/G = 1.0, n = 850 rpm; and (c) CO2 mass fraction as a function of the 

radial position for the different MEA solutions along the bed centerline in the radial direction. 

 

The absorption of CO2 by the liquid amine is characterised by the change of the CO2 

concentration in the gas phase in the reactor. Fig. 8 shows the CFD predicted contours of the 

CO2 mass fraction with (a) 30 % MEA, and (b) 90 % MEA, and the distribution of the CO2 
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mass fraction (c) along the bed centerline. This shows that the CO2 mass fraction decreases 

from 0.1697 at the gas inlet to 0.1363 (30% MEA) or 0.1355 (90% MEA) at the inner 

boundary of the packing. The contour figures show that at the same radial position, the CO2 

mass fraction is the highest in the central region of the bed and then it decreases towards the 

sidewall of the RPB. This is because the sidewalls increase the interfacial area as shown in 

Eq. 25, which causes more CO2 near the walls absorbed.  

    In order to compare the simulation results with the experimental data, the overall gas phase 

mass transfer coefficient is introduced, and this is given by (Jassim et al., 2007): 

ܽீܭ ൌ ொಸగሺమିమሻ ݈݊ ൬ ௬ೀమǡ௬ೀమǡೠ൰    (49) 

The CFD simulations examined 18 cases for the CO2 capture by liquid amine. The 

simulation results and the validation experimental data are presented in Fig. 9 and yCO2,out is 

calculated from the average of the CO2 mass fraction at the gas outlet. For the 30% MEA and 

the 90% MEA solutions, KGa is enhanced with increasing the rotation speed and L/G ratio for 

both the experimental data and the simulations. For the 30% MEA solutions, the simulations 

predicted KGa is in the range of 1.7 - 2.0 s-1 and the validated experimental data obtained 

similar results for KGa between 1.7 s-1 and 2.4 s-1.  On the other hand, for the 30% MEA, the 

KGa values changes only slightly for both the simulations and the experimental data when the 

L/G ratio increases from 2.8 to 3.7. It is observed that the simulation results are slightly lower 

than the experimental data, e.g. for the 30% MEA solutions, L/G = 3.3 and n = 850 rpm, KGa 

is 2.3 s-1 and 1.8 s-1 for the experimental data and simulations, respectively, and the 

simulation result is 21.7% lower than the experimental data.   

For the 90% MEA solutions, the results of the KGa obtained from the experimental data is 

in the range of 4.6 s-1 to 6.1 s-1 under all the experimental conditions. As the L/G ratio 

increases from 0.9 to 1.2, KGa increases to more than 1.3. For example, at n = 850 rpm, KGa 



  

38 

 

increases from 4.7 s-1  to 5.3 s-1 and 6.0 s-1 when the L/G ratio increases from 0.8 to 1.0 and 

1.2. However, KGa increases very slightly as the rotation speed increases. For example, at 

L/G = 3.3, KGa increases from 5.2 s-1  to 5.3 s-1 and 5.6 s-1  when the rotation speed increases 

from 600 to 850 and 1150 rpm. KGa, as obtained from the simulations, lies in the range 1.8 s-1 

to 2.0 s-1 for all the simulation cases investigated. The predicted KGa by the CFD simulation 

is lower than the experimental data. For the 90% MEA solutions and n = 850 rpm, KGa is 4.7 

s-1, 5.3 s-1, 6.0 s-1  for the experimental data, respectively, and 1.8 s-1, 1.9 s-1, 2.0 s-1 for the 

simulations, respectively, for L/G = 0.9, 1.0 and 1.2. The simulation results are 61.7%, 64.2% 

and 66.7% lower than the experimental results, respectively. The predicted KGa under the 90% 

MEA solutions follows the experimental trend that KGa increases with the increase in the 

rotation speed and L/G ratio.  

 

 

Fig. 9. Comparison of the overall gas phase mass transfer coefficient for the CO2 absorption 
into the MEA between the simulations and experimental data, (a) 30% MEA solutions; and (b) 

90% MEA solutions. 
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Fig. 9 shows that the simulated KGa is lower than the experimental values.  In order to 

more easily resolve this complex problem, we have simplified the model through some 

assumptions. On the other hand, the experiments were performed in a lab-scale reactor, which 

may introduce some difficulties and uncertainties for the measurements of the variables, e.g. 

temperatures and CO2 concentration inside the reactor. Further, the experimental data for the 

CO2 absorptions shown in Fig. 9 was measured at the gas inlet and outlet pipes instead of the 

inlet and outlet of the packing region. Also the reactions taking place on the surfaces outside 

the packing, such as on the internal sidewalls of the case, etc. can be significant in particular 

in the case of the high concentration of the MEA. Here we give a simple estimation. Since the 

reaction and mass transfer are mainly controlled by the interfacial area, thus we compare the 

possible extra area outside the packing in the rig for the reaction with the area inside the 

packing for the reaction. The area outside the packing includes the areas of the front and back 

sidewalls of the case and the areas of the front and back side plates of the packing, thus the 

total extra area is 0.24 m2. Considering the wet fraction outside the packing of 30% which is 

estimated from the wet fraction inside the packing on 200 m2/m3 (average wet area)/663 

m2/m3 (total area) for the 90% MEA solutions, the real total extra interfacial area for the 

reaction is 0.072 m2. For the cases of the 30% and 90% MEA solutions, the predicted 

interfacial area of the gas and liquid for the reaction inside the packing is 0.39 m2 (on average 

300 m2/m3 (wet area per volume)  0.0013 m3 (packing volume)) and 0.26 m2 (on average 

200 m2/m3  0.0013 m3), respectively. Therefore, there is an 18% area increase to the area 

inside the packing for the 30% MEA solution and 28% area increase for the 90% MEA 

solution. For the 30% MEA solution, 18% of the area difference is close to our prediction 

error of 20% in Fig. 9. For the 90% MEA solution, we consider that there is a noticeable 

increase in the liquid temperature at the exit of the packing from 313 K to 333 K which 

results in a 2.8 times higher reaction rate than that at the liquid inlet. Thus for the 90% MEA 
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solution, 28% of the area increase combined with the 2.8 times higher reaction rate results in 

approximately 70% increase in the mass transfer rate, which is close to our prediction error of 

about 60% in Fig. 9. Therefore, we are of the opinion that the discrepancy between the 

simulation results and experimental data is relatively reasonable and acceptable bearing in 

mind that only the reactions taking place inside the packing have been calculated in the 

simulation. In conclusion, the experimental data employed in this work has produced some 

primary encouraging validations. Our simulations are based on the experimental data from 

the literature (Lee et al., 2017). In order to verify the explanation by using experimental data, 

ideally new experiments and in particular a more sophisticated and advanced measurement 

system need to be developed. For the purpose of demonstrating the potential of employing 

the approach presented in this paper for the efficient prediction of CO2 absorption in an RPB, 

the results from the 2D simulations have given us confidence of the developed model. To 

improve the comparison with the experiments, new experiments and more advanced 

measurement technology need to be employed and the full-scale 3D simulations need to be 

performed in the future. Nevertheless, further improvements of the model are required, such 

as considering the entrance region and unsteadies of the mass transfer processes in a more 

detail manner in order to improve the accuracy of the model predictions.  

Eq. 49 shows that KGa has an index relationship with yCO2,out. When yCO2,out becomes 

smaller, KGa increases steeply. Actually, if one considers the error between the simulation 

and the experiment for the CO2 mass fraction in the gas phase, the error would be much 

smaller than that for KGa.  

The high concentration MEA solutions cause high corrosion to the equipment. In this work, 

the purpose of the 90% MEA solution used is to investigate the effect of the MEA 

concentration on the CO2 absorption in comparison with the low MEA solutions, e.g. the 30% 

MEA solution. In addition, the Jassim experiments (Jassim et al., 2007) showed that the high 
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concentration MEA solutions give a higher overall gas phase mass transfer coefficient, KGa, 

for the CO2 absorption in the RPB. This work further conforms their result.  

Through the validation of the simulation by the liquid holdup distribution and the overall 

gas phase mass transfer coefficient in the experiments, it is demonstrated that the CFD 

simulation method proposed in this work is reasonable and effective for the modelling of the 

multiphase reactions in RPBs. 

5.3 Liquid temperature 

Fig. 10 shows the liquid temperature contours (Figure 10(a) for 30% MEA and Figure 10(b) 

for 90% MEA) and distributions for the 30% MEA and the 90% MEA solutions along the 

bed centerline in the radial direction. In the RPB, the liquid temperature increases from the 

inner boundary of the packing to the outer boundary of the packing. The highest temperature 

is TL = 318.5 K for the 30% MEA solution and TL = 337.9 K for the 90% MEA solution. The 

reason that the temperature of the 90% MEA solution is higher than that for the 30% MEA 

solution is that the 90% MEA solution captures more CO2 and releases more reaction heat. 

For the 90% MEA solution, the highest temperature is situated at r = 0.136 m and after r = 

0.136 m, the liquid temperature decreases. This is because there is a heat exchange between 

the fresh air at the temperature of (T = 313.2 K) and hot liquid (T = 337.9 K). The lowest 

temperature in the reactor appears in the region below the inner boundary of the RPB, and 

this approaches 313.2 K. 

Currently, it is difficult to measure the temperature distribution in the packing of the RPB 

when it is in operation and we have not found any data in the literature on this issue. Our 

simulations are based on the experimental data from the literature (Lee et al., 2017), in which 

there is no data of the temperature in the packing. Since the trend for CO2 absorption is 

predicted correctly, this gives us confidence in the temperature prediction. Furthermore, it is 
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one of the advantages of CFD simulations that it can predict or estimate quantities which are 

difficult to obtain experimentally. 

 

Fig. 10. Contours of the liquid temperature (a) 30% MEA, L/G = 3.3, n = 850 rpm; (b) 90% 
MEA, L/G = 1.0, n = 850 rpm; and (c) the liquid temperature as a function of the radial 
position for the different MEA solutions along the bed centreline in the radial direction. 

 

5.4 Gas radial velocity and liquid radial velocity 

Fig. 11(a) shows the gas radial velocity of the 30% MEA and the 90% MEA solutions 

along the bed centreline in the radial direction under the rotation speed of 850 rpm. It 

indicates that the absolute gas radial velocity increases from the outer boundary to the inner 

boundary because of the decrease in the cross-sectional area, through which the gas flows. 

The simulated gas radial velocity for the 30% MEA and 90% MEA basically matches the 

equation of UG = QG / (2Zr). The slight difference is caused by the absorption of CO2 by 

MEA. 

The liquid radial velocity is one of the most important characteristics in the gas-liquid two-

phase flow in the RPB. Fig. 11(b) shows the liquid radial velocity distribution along the bed 

centreline. In the RPB, the radial velocity increases along the radial direction. The liquid 
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radial velocities within the packing region increase slightly from 0.30 m/s to 0.55 m/s for the 

30% MEA solution and from 0.14 m/s to 0.29 m/s for the 90% MEA solution. Through a 

series of simulations, it indicates that the rotation speed influences the liquid radial velocity 

highly and with the increase of the rotation speed, the liquid radial velocity increases 

correspondingly.  

 

Fig. 11. Gas radial velocity (a) and liquid radial velocity (b) along the radial direction for the 
30% MEA, L/G = 3.3, n = 850 rpm and the 90% MEA, L/G = 1.0, n = 850 rpm. 

 

5.5 Pressure distribution 

     Fig. 12 shows the pressure distributions of the 30% MEA and 90% MEA solutions along 

the bed centreline in the radial direction. In the whole reactor, the pressure decreases from the 

gas inlet to the gas outlet. In the packing region, the pressure near the inner boundary has a 

non-linear relationship with the radial position, except that the pressure is a linear function of 

the radial positon in the packing region. For the 30% MEA solution, the pressure drop in the 

packing is 232.6 Pa. For the 90% MEA solution, the pressure drop in the packing is 235.4 Pa, 

which is slightly higher than that for the 30% MEA solution. This is because the 90% MEA 

solution has higher viscosity and thus causes higher flow resistance and pressure.   
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In the experiment, the pressure has not been measured but we can compare the simulation 

results to similar experimental data that is available in the literatures. For the Hassan-Beck 

experiment (1997), the packed bed has an inner diameter of 79 mm, the outer diameter of 201 

mm, and the thickness of 60 mm; the porosity of the packing is 0.83 and the specific area of 

the packing is 1428 m2/m3.  Under QL = 10.5 L/min or 14.4 L/min, QG = 50 - 70 m3/h and n = 

620 rpm, the pressure drop is 20 - 50 mmH2O (196 Pa - 490 Pa). In our simulations, the 

operating conditions and facilities are similar to the above experimental conditions and we 

find the pressure drop is 200 Pa - 250 Pa, which is in the range of 196 Pa - 490 Pa. Thus, we 

may conclude that the predicted pressure is reasonable. 

 

Fig. 12. Pressure distribution along the radial direction for the 30% MEA, L/G = 3.3, n = 850 
rpm and the 90% MEA, L/G = 1.0, n = 850 rpm. 

 

 

6. Conclusions 

    In this paper, the CO2 absorption by the liquid amine in the RPB has been, for the first time, 

successfully simulated by the Eulerian-Eulerian CFD method. A new gas-liquid two-phase 

porous media model, based on the Kołodziej one phase model, is employed in order to 
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describe the flow resistance. The liquid generation zone and the liquid elimination zone were 

constructed and their corresponding models were built for setting the gas-liquid counter-

current flow. The combination of these new models is validated by the Burns experimental 

correlation and they are demonstrated to be robust in predicting the liquid holdup distribution 

in RPBs. The model for the interfacial area between the gas and liquid is derived from the 

VOF simulation of the liquid flow on real wire screens. 

    The 18 cases investigated for the CO2 absorption using MEA solutions in the RPB were 

simulated and validated with the available experimental data. For the 30% MEA solutions, 

the L/G ratio is 2.8, 3.3 or 3.7 and the rotation speed is 600, 850 or 1150 rpm, whereas for the 

90% MEA solutions, the L/G ratio is 0.9, 1.1 or 1.2 and the rotation speed is 600, 850 or 

1150 rpm. Finally, the results were analysed and discussed. 

In conclusion, this work provides an effective CFD method to model multiphase reactions 

in RPBs and this method is feasible for scaling up investigations on the simulation of large-

scale RPBs. 
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Nomenclature 

AGL  interfacial area, m2 

aR  correction coefficient 
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aS  specific area of the packing materials, m2m-3 

aƍS  specific area of the wet wires, m2 m-3 

C  concentration, kmolm-3 

D  diffusivity, m2s-1 

Dh  hydraulic diameter, m 

dp  equivalent sphere diameter of the packing materials, m 

dw   wire diameter, m 

dƍw   wire and liquid film diameter, m 

E  total energy, activation energy, J 

Ex  enhancement factor 

FGL  drag force between the gas and liquid, N m-3 

f   friction factor 

fapp   Fanning friction factor for developing laminar flow 

fe   ratio of wetted packing or ratio of interfacial area to the total packing surface area 

ft   Fanning friction factor for developing turbulence flow 

g   acceleration due to gravity, ms-2 

gc  centrifugal acceleration, ms-2 

g0  characteristic centrifugal acceleration (=100 ms-2), ms-2 

g1  characteristic centrifugal acceleration (=205.6 ms-2), ms-2 

H  Henry constant, m3Pamol-1 

HL  enthalpy of the liquid phase, Jmol-1 

h  enthalpy of species, Jmol-1 

hGL  heat transfer coefficient, Wm-2K-1 

hL  liquid holdup 

J  diffusion flux of species, kgm-2s-1 

KGa  overall gas phase mass transfer coefficient, ms-1 

kb  reaction rate constant, m6kmol-2s-1 

keff  effective conductivity, Wm-1K -1 

kGL  total mass transfer coefficient between gas and liquid, ms-1 

kL*  mass transfer coefficient in the liquid phase from film theory , ms-1 

ki  mass transfer coefficient in the i phase, ms-1 
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k-1  reaction rate constant, m3kmol-1s-1 

k2  reaction rate constant, m3kmol-1s-1 

L  liquid mass flux, kgm-2s-1 

Mw  molar mass, gmol-1 

mGL,CO2  CO2 mass transfer between the gas and liquid, kgs-1 

n   rotation speed, rpm 

P  pressure, Pa 

Qh,GL  transferred heat between the gas phase and liquid phase, W 

Qi  volume flow rate, m3s-1 

R  gas constant, 8.314 Jmol-1K-1 

Rj  net rate of production of the j species by chemical reactions 

r   radial coordinate, m 

r i  inner radius of the rotating packed bed, m 

ro  outer radius of the rotation packed bed, m 

r   radial separation, m 

rCO2  CO2 reaction rate 

Si  momentum source, kgms-2 

SLS  interaction force between the liquid and solids of the packing materials, N 

SGS  interaction force between gas and solids of packing materials, N 

Sm,i   mass source, kgm-3s-1 

Ti  temperature of the i phase, K 

U  liquid flow rate per unit area or superficial velocity, ms-1 

U0  characteristic flow rate per unit area (=1 cms-1), ms-1 

U1  characteristic flow rate per unit area (=0.0106 ms-1), ms-1 

V  volume, m3 

v  velocity, ms-1 

ve   effective velocity, ms-1 

x   axial coordinate, m 

x   axial separation, m 

Y  mass fraction of each species 

yCO2,in  molar fraction of CO2 in the gas inlet to the rotating packed bed 
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yCO2,out  molar fraction of CO2 in the gas outlet from the rotating packed bed 

Z  width or axial length of the rotating packed bed, m 

z   tangential coordinate, m 

 

 

Greek 

i   phase fraction 

+   dimensionless channel length 

sim  error for simulation 

   porosity of packed bed 

i  volume fraction of the i phase 

  dynamic contact angle,  

1  characteristic dynamic contact angle (= 75),  κ  diffusion layer thickness for mass transfer, m 

  thermal conductivity, Wm-1K-1 

0.3   dynamic viscosity for the 30 wt% MEA solution, mPas 

0.9   dynamic viscosity for the 90 wt% MEA solution, mPas 

i   dynamic viscosity of the i phase, Pas 

   kinematic viscosity, m2s-1 

0  characteristic kinematic viscosity (= 1.0×10-6 m2s-1), m2s-1 

1  characteristic kinematic viscosity (= 3.35×10-6 m2s-1), m2s-1 

   angle of flow direction slop to the bed axis,  

i  density of the i phase, kgm-3 

L,CO2*  CO2 concentration on the surface of the liquid flow, kgm-3 

L,CO2  CO2 concentration in the liquid bulk  flow, kgm-3 

   bed tortuosity factor 

  rotation speed, rads-1 

 

 

Dimensionless parameters 

Ha  Hatta number 
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Nu  Nusselt number 

Pr  Prandtl number 

Re  Reynold number 

 

 

Subscripts 

CO2  carbon dioxide 

exp  experiment 

G  gas phase 

i  = G, L 

j  j coordination (axial, radial or tangential coordinate) 

k  k species 

L  liquid phase 

MEA  monoethanolamine 

r  radial coordinate 

reactor  reactor rig 

S  solids phase for the packing materials 

sim  simulation 

w  wall 

x  axial coordinate 

z  tangential coordinate 
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