Pouran, HM, Banwart, SA orcid.org/0000-0001-7223-6678 and Romero-Gonzalez, M (2017) Effects of synthetic iron and aluminium oxide surface charge and hydrophobicity on the formation of bacterial biofilm. Environmental Science: Processes and Impacts, 19 (4). pp. 622-634. ISSN 2050-7887
Abstract
In this research, bacterial cell attachments to hematite, goethite and aluminium hydroxide were investigated. The aim was to study the effects of these minerals' hydrophobicity and pH-dependent surface charge on the extent of biofilm formation using six genetically diverse bacterial strains: Rhodococcus spp. (RC92 & RC291), Pseudomonas spp. (Pse1 & Pse2) and Sphingomonas spp. (Sph1 & Sph2), which had been previously isolated from contaminated environments. The surfaces were prepared in a way that was compatible with the naturally occurring coating process in aquifers: deposition of colloidal particles from the aqueous phase. The biofilms were evaluated using a novel, in situ and non-invasive technique developed for this purpose. A manufactured polystyrene 12-well plate was used as the reference surface to be coated with synthesized minerals by deposition of their suspended particles through evaporation. Planktonic phase growth indicates that it is independent of the surface charge and hydrophobicity of the studied surfaces. The hydrophobic similarities failed to predict biofilm proliferation. Two of the three hydrophilic strains formed extensive biofilms on the minerals. The third one, Sph2, showed anomalies in contrast to the expected electrostatic attraction between the minerals and the cell surface. Further research showed how the solution's ionic strength affects Sph2 surface potential and shapes the extent of its biofilm formation; reducing the ionic strength from ≈200 mM to ≈20 mM led to a tenfold increase in the number of cells attached to hematite. This study provides a technique to evaluate biofilm formation on metal-oxide surfaces, under well-controlled conditions, using a simple yet reliable method. The findings also highlight that cell numbers in the planktonic phase do not necessarily show the extent of cell attachment, and thorough physicochemical characterization of bacterial strains, substrata and the aquifer medium is fundamental to successfully implementing any bioremediation projects.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Royal Society of Chemistry 2017. This is an author produced version of a paper published in Environmental Science: Processes and Impacts. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Earth Surface Science Institute (ESSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 26 Apr 2017 12:08 |
Last Modified: | 08 Mar 2018 01:38 |
Published Version: | https://doi.org/10.1039/C6EM00666C |
Status: | Published |
Publisher: | Royal Society of Chemistry |
Identification Number: | 10.1039/C6EM00666C |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:115591 |