Lee, S, Sundaram, S, Armitage, L et al. (5 more authors) (2014) Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chemical Biology, 9 (3). 673 - 682. ISSN 1554-8929
Abstract
Structure-activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure-activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2013 American Chemical Society. This is an open access article under the terms of the Creative Commons Attribution License. |
Keywords: | Arabidopsis Proteins; Baculoviridae; Binding Sites; F-Box Proteins; Genetic Vectors; Indoleacetic Acids; Ligands; Models, Molecular; Protein Binding; Receptors, Cell Surface; Recombinant Fusion Proteins; Structure-Activity Relationship; Surface Plasmon Resonance |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 13 May 2015 13:16 |
Last Modified: | 03 Nov 2017 09:29 |
Published Version: | http://dx.doi.org/10.1021/cb400618m |
Status: | Published |
Publisher: | American Chemical Society |
Identification Number: | 10.1021/cb400618m |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:84374 |