Harvey, J, Garrido, C, Savov, IP et al. (5 more authors) (2014) 11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 376. 20 - 30. ISSN 0009-2541
Abstract
Serpentinites form by hydration of mantle peridotite and constitute the largest potential reservoir of fluid-mobile elements entering subduction zones. Isotope ratios of one such element, boron, distinguish fluid contributions from crustal versus serpentinite sources. Despite 85% of boron hosted within abyssal peridotite being lost at the onset of subduction at the lizardite-to-antigorite transition, a sufficient cargo of boron to account for the composition of island arc magma is retained (c. 7 μg g− 1, with a δ11B of + 22‰) until the down-going slab reaches the antigorite-out isograd. At this point a 11B-rich fluid, capable of providing the distinctive δ11B signature of island arc basalts, is released. Beyond the uniquely preserved antigorite-out isograd in serpentinites from Cerro del Almirez, Betic Cordillera, Spain, the prograde lithologies (antigorite–chlorite–orthopyroxene–olivine serpentinite, granofels-texture chlorite-harzburgite and spinifex-texture chlorite-harzburgite) have very different boron isotope signatures (δ11B = − 3 to + 6‰), but with no significant difference in boron concentration compared to the antigorite-serpentinite on the low P–T side of the isograd. 11B-rich fluid, which at least partly equilibrated with pelagic sediments, is implicated in the composition of these prograde lithologies, which dehydrated under open-system conditions. Serpentinite-hosted boron lost during the early stages of dehydration is readily incorporated into forearc peridotite. This, in turn, may be dragged to sub-arc depths as a result of subduction erosion and incorporated in a mélange comprising forearc serpentinite, altered oceanic crust and pelagic sediment. At the antigorite-out isograd it dehydrates, thus potentially providing an additional source of 11B-rich fluids.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2014 Elsevier B.V. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy. NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Geology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Geology, 376, (2014) DOI 10.1016/j.chemgeo.2014.03.015 |
Keywords: | Boron; Isotopes; Subduction; Antigorite dehydration; Island arc volcanics; Serpentinite |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 03 Oct 2014 15:19 |
Last Modified: | 18 Jan 2018 09:27 |
Published Version: | http://dx.doi.org/10.1016/j.chemgeo.2014.03.015 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.chemgeo.2014.03.015 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:80449 |