White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback

Bryden, J.A. and Cohen, N. (2008) Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback. Biological Cybernetics, 98 (4). pp. 339-351. ISSN 1432-0770


This paper presents a simple yet biologicallygrounded model for the neural control of Caenorhabditis elegans forward locomotion. We identify a minimal circuit within the C. elegans ventral cord that is likely to be sufficient to generate and sustain forward locomotion in vivo. This limited subcircuit appears to contain no obvious central pattern generated control. For that subcircuit, we present a model that relies on a chain of oscillators along the body which are driven by local and proximate mechano-sensory input. Computer simulations were used to study the model under a variety of conditions and to test whether it is behaviourally plausible. Within our model, we find that a minimal circuit of AVB interneurons and B-class motoneurons is sufficient to generate and sustain fictive forward locomotion patterns that are robust to significant environmental perturbations. The model predicts speed and amplitude modulation by the AVB command interneurons. An extended model including D-class motoneurons is included for comparison.

Item Type: Article
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Computing (Leeds)
Depositing User: Miss Jamie Grant
Date Deposited: 10 Mar 2009 19:08
Last Modified: 15 Sep 2014 01:39
Published Version: http://dx.doi.org/10.1007/s00422-008-0212-6
Status: Published
Publisher: Springer
Identification Number: 10.1007/s00422-008-0212-6
URI: http://eprints.whiterose.ac.uk/id/eprint/7948

Actions (repository staff only: login required)