White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Kernel-based classification using quantum mechanics

Nasios, N. and Bors, A.G. (2006) Kernel-based classification using quantum mechanics. Pattern Recognition, 40 (3). pp. 875-889. ISSN 0031-3203

Full text not available from this repository.

Abstract

This paper introduces a new nonparametric estimation approach inspired from quantum mechanics. Kernel density estimation associates a function to each data sample. In classical kernel estimation theory the probability density function is calculated by summing up all the kernels. The proposed approach assumes that each data sample is associated with a quantum physics particle that has a radial activation field around it. Schrödinger differential equation is used in quantum mechanics to define locations of particles given their observed energy level. In our approach, we consider the known location of each data sample and we model their corresponding probability density function using the analogy with the quantum potential function. The kernel scale is estimated from distributions of K-nearest neighbours statistics. In order to apply the proposed algorithm to pattern classification we use the local Hessian for detecting the modes in the quantum potential hypersurface. Each mode is assimilated with a nonparametric class which is defined by means of a region growing algorithm. We apply the proposed algorithm on artificial data and for the topography segmentation from radar images of terrain.

Item Type: Article
Institution: The University of York
Academic Units: The University of York > Computer Science (York)
Depositing User: York RAE Import
Date Deposited: 26 Feb 2009 16:12
Last Modified: 26 Feb 2009 16:12
Published Version: http://dx.doi.org/10.1016/j.patcog.2006.08.011
Status: Published
Publisher: Elsevier Science B.V.
Refereed: Yes
Identification Number: 10.1016/j.patcog.2006.08.011
URI: http://eprints.whiterose.ac.uk/id/eprint/7165

Actions (repository staff only: login required)