White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Substantial reduction of critical current for magnetization switching in an exchange-biased spin-valve

Jiang, Y., Nozaki, T., Abe, S., Ochiai, T., Hirohata, A., Tezuka, N. and Inomata, K. (2004) Substantial reduction of critical current for magnetization switching in an exchange-biased spin-valve. Nature Materials, 3 (6). pp. 361-364. ISSN 1476-1122

Full text not available from this repository.

Abstract

Great interest 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions11, 12 of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices13: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 108 to 107 A cm-2. In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 106 A cm-2. We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory.

Item Type: Article
Academic Units: The University of York > Electronics (York)
Depositing User: York RAE Import
Date Deposited: 20 Mar 2009 10:59
Last Modified: 20 Mar 2009 10:59
Published Version: http://dx.doi.org/10.1038/nmat1120
Status: Published
Publisher: Nature Publishing Group
Refereed: Yes
Identification Number: 10.1038/nmat1120
URI: http://eprints.whiterose.ac.uk/id/eprint/7064

Actions (login required)

View Item View Item