White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

A spin probe study of mesoporous silica formation via a neutral templating route

Caldararu, H., Caragheorgheopol, A., Savonea, F., Macquarrie, D.J. and Gilbert, B.C. (2003) A spin probe study of mesoporous silica formation via a neutral templating route. Journal of Physical Chemistry B, 107 (25). pp. 6032-6038. ISSN 1520-6106

Full text not available from this repository.


The structure of dodecylamine (DDA) aggregates acting as templates in the synthesis of mesoporous silica (in the DDA/water/ethanol/tetraethoxysilane (TEOS) system) has been studied via the EPR spectra of a variety of spin probes and of a spin-labeled silica precursor. Two recipes have been examined: one, starting from a water-rich DDA solution, A0, reported to produce a silica with framework mesopores and textural pores comparable in volume, and another, starting from an ethanol-rich solution, B0 which yields a solid having practically only framework pores. For both compositions the relative positions of the spin probes in the aggregates have been determined, the local polarities expressed in terms of the Kosower scale and their motions examined. The aggregates formed have been characterized as emulsion droplets for A0 and micelles with radii <25 Å for B0. After reaction of A0 and B0 with TEOS, all probes showed significantly hindered motion in the wet precipitates. In the solid B, precipitated from the ethanol-rich solvent, the spin probes 5- and 7-doxyl stearic acid (5- and 7-DSA) are strongly immobilized, while other probes maintain quasi-isotropic motion but with very large rotational correlation times. This pattern is characteristic of micelles with hindered tumbling and/or lateral diffusion and is assigned to those aggregates (in interaction with the silica component) on which the framework mesopores are formed. In solid A, precipitated from A0, 5- and 7-DSA spin probes maintain the spectra with anisotropic features, characterized by an order degree, found in the starting emulsion, but with evidence of tighter packing, while other probes have their rotation retarded. These aggregates have a low curvature interface, characteristic of emulsion droplets and are assumed to be at the origin of the large textural pores, which characterize this solid. Adsorption of probes after synthesis rather than before precipitation supports these assignments. We have also found that the surfactant−silica interaction is critically dependent on solvent. The strong immobilization of the probes in the interface region, observed during drying at low temperatures, is a reversible process, since under these conditions the silica network cross-linking is only incipient; 29Si NMR data show that cross-linking becomes important only above 90 °C.

Item Type: Article
Institution: The University of York
Academic Units: The University of York > Chemistry (York)
Depositing User: York RAE Import
Date Deposited: 31 Jul 2009 13:28
Last Modified: 31 Jul 2009 13:28
Published Version: http://dx.doi.org/10.1021/jp021004o
Status: Published
Publisher: American Chemical Society
Identification Number: 10.1021/jp021004o
URI: http://eprints.whiterose.ac.uk/id/eprint/6849

Actions (repository staff only: login required)