White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue sheds light on the mechanism and suggests the "basic module" for dimeric d(C/U)Tpases.

Moroza, O.V., Harkiolakia,, M., Galperinc, M.Y., Vagina, A.A., González-Pacanowskad, D. and Wilson, K.S. (2004) The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue sheds light on the mechanism and suggests the "basic module" for dimeric d(C/U)Tpases. Journal of Molecular Biology, 342 (5). pp. 1583-1597. ISSN 0022-2836

Full text not available from this repository.

Abstract

The crystal structure of the dUTPase from the important gastric pathogen Campylobacter jejuni has been solved at 1.65 Å spacing. This essential bacterial enzyme is the second representative of the new family of dimeric dUTPases to be structurally characterised. Members of this family have a novel all-α fold and are unrelated to the all-β dUTPases of the majority of organisms including eukaryotes such as humans, bacteria such as Escherichia coli, archaea like Methanococcus jannaschii and animal viruses. Therefore, dimeric dUTPases can be considered as candidate drug targets. The X-ray structure of the C. jejuni dUTPase in complex with the non-hydrolysable substrate analogue dUpNHp allows us to define the positions of three catalytically significant phosphate-binding magnesium ions and provides a starting point for a detailed understanding of the mechanism of dUTP/dUDP hydrolysis by dimeric dUTPases. Indeed, a water molecule present in the structure is ideally situated to act as the attacking nucleophile during hydrolysis. A comparison of the dUTPases from C. jejuni and Trypanosoma cruzi reveals a common fold with certain distinct features, both in the rigid and mobile domains as defined in the T. cruzi structure. Homologues of the C. jejuni dUTPase have been identified in several other bacteria and bacteriophages, including the dCTPase of phage T4. Sequence comparisons of these proteins define a new superfamily of d(C/U)TPases that includes three distinct enzyme families: (1) dUTPases in trypanosomatides, C. jejuni and several other Gram-negative bacteria, (2) predicted dUTPases in various Gram-positive bacteria and their phages, and (3) dCTP/dUTPases in enterobacterial T4-like phages. All these enzymes share a basic module that consists of two α-helices from the rigid domain, two helices from the mobile domain and connecting loops. These results in concert with a number of conserved residues responsible for interdomain cross-talk provide valuable insight towards rational drug design.

Item Type: Article
Keywords: dUTPase; dCTPase; bacteriophage; enzyme specificity; ligand complex
Institution: The University of York
Academic Units: The University of York > Chemistry (York)
Depositing User: York RAE Import
Date Deposited: 01 Jun 2009 11:39
Last Modified: 01 Jun 2009 11:39
Published Version: http://dx.doi.org/10.1016/j.jmb.2004.07.050
Status: Published
Publisher: Elsevier Science B.V., Amsterdam
Refereed: Yes
Identification Number: 10.1016/j.jmb.2004.07.050
URI: http://eprints.whiterose.ac.uk/id/eprint/6788

Actions (repository staff only: login required)