White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations

Traub, R.D., Pais, I., Bibbig, A., LeBeau, F.E.N., Buhl, E.H., Hormuzdi, S.G., Monyer, H. and Whittington, M.A. (2003) Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proceedings of the National Academy of Sciences, 100 (3). pp. 1370-1374. ISSN 0027-8424

Available under licence : See the attached licence file.

Download (136Kb)


Electrical coupling between pyramidal cell axons, and between interneuron dendrites, have both been described in the hippocampus. What are the functional roles of the two types of coupling? Interneuron gap junctions enhance synchrony of γ oscillations (25-70 Hz) in isolated interneuron networks and also in networks containing both interneurons and principal cells, as shown in mice with a knockout of the neuronal (primarily interneuronal) connexin36. We have recently shown that pharmacological gap junction blockade abolishes kainate-induced γ oscillations in connexin36 knockout mice; without such gap junction blockade, γ oscillations do occur in the knockout mice, albeit at reduced power compared with wild-type mice. As interneuronal dendritic electrical coupling is almost absent in the knockout mice, these pharmacological data indicate a role of axonal electrical coupling in generating the γ oscillations. We construct a network model of an experimental γ oscillation, known to be regulated by both types of electrical coupling. In our model, axonal electrical coupling is required for the γ oscillation to occur at all; interneuron dendritic gap junctions exert a modulatory effect.

Item Type: Article
Copyright, Publisher and Additional Information: Copyright © 2003 by the National Academy of Sciences
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Biological Sciences (Leeds) > Institute of Membrane and Systems Biology (Leeds)
Depositing User: Sherpa Assistant
Date Deposited: 14 Mar 2006
Last Modified: 07 Jun 2014 07:13
Published Version: http://www.pnas.org/cgi/content/full/100/3/1370
Status: Published
Refereed: Yes
Identification Number: 10.1073/pnas.0337529100
URI: http://eprints.whiterose.ac.uk/id/eprint/565

Actions (repository staff only: login required)