White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

Collins, WD, Ramaswamy, V, Schwarzkopf, MD, Sun, Y, Portmann, RW, Fu, Q, Casanova, SEB, Dufresne, JL, Fillmore, DW, Forster, PM, Galin, VY, Gohar, L, Ingram, WJ, Kratz, DP, Lefebvre, MP, Li, J, Marquet, P, Oinas, V, Tsushima, Y, Uchiyama, T and Zhong, WY (2006) Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Journal of Geophysical Research, 111 (D14317). 1 - 2 . ISSN 0148-0227

Full text available as:
[img]
Preview
Text
JGR_2005JD006713[1].pdf
Available under License : See the attached licence file.

Download (911Kb)

Abstract

The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

Item Type: Article
Copyright, Publisher and Additional Information: © 2006 American Geophysical Union. Reproduced in accordance with the publisher's self-archiving policy.
Keywords: greenhouse gases
Academic Units: The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds)
Depositing User: Symplectic Publications
Date Deposited: 13 Oct 2011 12:22
Last Modified: 08 Feb 2013 17:34
Published Version: http://dx.doi.org/10.1029/2005JD006713
Status: Published
Publisher: American Geophysical Union
Identification Number: 10.1029/2005JD006713
URI: http://eprints.whiterose.ac.uk/id/eprint/43319

Actions (login required)

View Item View Item