White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Excited-state relaxation in PbSe quantum dots

An, J.M., Califano, M., Franceschetti, A. and Zunger, A. (2008) Excited-state relaxation in PbSe quantum dots. Journal of Chemical Physics, 128 (16). p. 164720. ISSN 0021-9606

Full text available as:
[img]
Preview
Text
califanom1.pdf
Available under licence : See the attached licence file.

Download (211Kb)

Abstract

In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings (“phonon-bottleneck”). However, excited-state relaxation was observed to be rather fast (1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1–7 ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the PS electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed PS intraband decay time scale without the need to invoke any exotic relaxation mechanisms.

Item Type: Article
Copyright, Publisher and Additional Information: © 2008 American Institute of Physics. This is an author produced version of a paper published in Journal of Chemical Physics. Uploaded in accordance with the publisher's self archiving policy.
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Microwaves and Photonics (Leeds)
Depositing User: Sherpa Assistant
Date Deposited: 14 Aug 2008 13:33
Last Modified: 08 Feb 2013 17:05
Published Version: http://dx.doi.org/10.1063/1.2901022
Status: Published
Publisher: American Institute of Physics
Identification Number: 10.1063/1.2901022
URI: http://eprints.whiterose.ac.uk/id/eprint/4322

Actions (repository staff only: login required)