White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Habitat association among Amazonian tree species: a landscape-scale approach

Phillips, O.L., Vargas, P.N., Monteagudo, A.L., Cruz, A.P., Zans, M.E.C., Sanchez, W.G., Yli-Halla, M. and Rose, S. (2003) Habitat association among Amazonian tree species: a landscape-scale approach. Journal of Ecology, 91 (5). pp. 757-775. ISSN 0022-0477

Full text available as:
[img] Text
redirectphillipsol.htm
Available under License : See the attached licence file.

Download (654b)

Abstract

1: Unravelling which factors affect where tropical trees grow is an important goal for ecologists and conservationists. At the landscape scale, debate is mostly focused on the degree to which the distributions of tree species are determined by soil conditions or by neutral, distance-dependent processes. Problems with spatial autocorrelation, sparse soil sampling, inclusion of species-poor sites with extreme edaphic conditions, and the difficulty of obtaining sufficient sample sizes have all complicated assessments for high diversity tropical forests.

2: We evaluated the extent and pervasiveness of habitat association of trees within a 10 000 km 2 species-rich lowland landscape of uniform climate in south-west Amazonia. Forests growing on two non-flooded landscape units were inventoried using 88 floristic plots and detailed soil analyses, sampling up to 849 tree species. We applied singlespecies and community-level analytical techniques (frequency-distributions of presence records, association analysis, indicator species analysis, ordination, Mantel correlations, and multiple regression of distance matrices) to quantify soil/floristic relationships while controlling for spatial autocorrelation.

3: Obligate habitat-restriction is very rare: among 230 tree species recorded in ≥ 10 localities only five (2.2%) were always restricted to one landscape unit or the other.

4: However, many species show a significant tendency to habitat association. For example, using Monte Carlo randomization tests, of the 34 most dominant species across the landscape the distributions of 26 (76.5%) are significantly related to habitat. We applied density-independent and frequency-independent estimates of habitat association and found that rarer species tend to score higher, suggesting that our full community estimates of habitat association are still underestimated due to the inadequate sampling of rarer species.

5: Community-level floristic variation across the whole landscape is related to the variation in 14 of 16 measured soil variables, and to the geographical distances between samples.

6: Multiple regression of distance matrices shows that 10% of the floristic variation can be attributed to spatial autocorrelation, but even after accounting for this at least 40% is attributable to measured environmental variation.

7: Our results suggest that substrate-mediated local processes play a much more important role than distance-dependent processes in structuring forest composition in Amazonian landscapes.

Item Type: Article
Copyright, Publisher and Additional Information: © 2003 British Ecological Society. Full text available on author's web site (linked from "Associated URL" field).
Keywords: forest, floristics, soils, spatial autocorrelation, tree species composition
Academic Units: The University of Leeds > Faculty of Environment (Leeds) > School of Geography (Leeds)
Depositing User: Repository Officer
Date Deposited: 23 May 2005
Last Modified: 08 Feb 2013 17:01
Published Version: http://www.geog.leeds.ac.uk/projects/rainfor/Phill...
Status: Published
Refereed: Yes
Identification Number: 10.1046/j.1365-2745.2003.00815.x
URI: http://eprints.whiterose.ac.uk/id/eprint/358

Actions (login required)

View Item View Item