Wang, G., Lu, Z., Li, Y. et al. (7 more authors) (2021) Electroceramics for high-energy density capacitors: current status and future perspectives. Chemical Reviews, 121 (10). pp. 6124-6172. ISSN 0009-2665
Abstract
Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge–discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 The Authors. Published by American Chemical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Capacitors; Energy storage; Electrical properties; Ceramics; Insulators |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/L017563/1 ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/N010493/1 Engineering and Physical Sciences Research Council EP/P02470X/1 Engineering and Physical Sciences Research Council EP/P025285/1 Engineering and Physical Sciences Research Council EP/S019367/1 Engineering and Physical Sciences Research Council EP/R00661X/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 06 May 2021 12:40 |
Last Modified: | 21 Feb 2022 12:19 |
Status: | Published |
Publisher: | American Chemical Society |
Refereed: | Yes |
Identification Number: | 10.1021/acs.chemrev.0c01264 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:173811 |