White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Quantum box energies as a route to the ground state levels of self-assembled InAs pyramidal dots

Califano, M. and Harrison, P. (2000) Quantum box energies as a route to the ground state levels of self-assembled InAs pyramidal dots. Journal of Applied Physics, 88 (10). pp. 5870-5874. ISSN 1089-7550

Full text available as:
[img]
Preview
Text
harrisonp24.pdf
Available under licence : See the attached licence file.

Download (67Kb)

Abstract

A theoretical investigation of the ground state electronic structure of InAs/GaAs quantum confined structures is presented. Energy levels of cuboids and pyramidal shaped dots are calculated using a single-band, constant-confining-potential model that in former applications has proved to reproduce well both the predictions of very sophisticated treatments and several features of many experimental photoluminescence spectra. A connection rule between their ground state energies is found which allows the calculation of the energy levels of pyramidal dots using those of cuboids of suitably chosen dimensions, whose solution requires considerably less computational effort. The purpose of this work is to provide experimentalists with a versatile and simple method to analyze their spectra. As an example, this rule is then applied to successfully reproduce the position of the ground state transition peaks of some experimental photoluminescence spectra of self-assembled pyramidal dots. Furthermore the rule is used to predict the dimensions of a pyramidal dot, starting from the knowledge of the ground state transition energy and an estimate for the aspect ratio Q. © 2000 American Institute of Physics.

Item Type: Article
Copyright, Publisher and Additional Information: Copyright © 2000 American Institute of Physics. Reproduced in accordance with the publisher's self-archiving policy. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Microwaves and Photonics (Leeds)
Depositing User: Repository Officer
Date Deposited: 01 Nov 2006
Last Modified: 04 Jun 2014 17:28
Published Version: http://dx.doi.org/10.1063/1.1312840
Status: Published
Publisher: American Institute of Physics
Refereed: Yes
Identification Number: 10.1063/1.1312840
URI: http://eprints.whiterose.ac.uk/id/eprint/1682

Actions (repository staff only: login required)