Nazir, A., Cheema, M., Sheng, B. et al. (7 more authors) (2020) OFF-eNET: An optimally fused fully end-to-end network for automatic dense volumetric 3D intracranial blood vessels segmentation. IEEE Transactions on Image Processing, 29. pp. 7192-7202. ISSN 1057-7149
Abstract
Intracranial blood vessels segmentation from computed tomography angiography (CTA) volumes is a promising biomarker for diagnosis and therapeutic treatment in cerebrovascular diseases. These segmentation outputs are a fundamental requirement in the development of automated decision support systems for preoperative assessment or intraoperative guidance in neuropathology. The state-of-the-art in medical image segmentation methods are reliant on deep learning architectures based on convolutional neural networks. However, despite their popularity, there is a research gap in the current deep learning architectures optimized to address the technical challenges in blood vessel segmentation. These challenges include: (i) the extraction of concrete brain vessels close to the skull; and (ii) the precise marking of the vessel locations. We propose an Optimally Fused Fully end-to-end Network (OFF-eNET) for automatic segmentation of the volumetric 3D intracranial vascular structures. OFF-eNET comprises of three modules. In the first module, we exploit the up-skip connections to enhance information flow, and dilated convolution for detailed preservation of spatial feature map that are designed for thin blood vessels. In the second module, we employ residual mapping along with inception module for speedy network convergence and richer visual representation. For the third module, we make use of the transferred knowledge in the form of cascaded training strategy to gradually optimize the three segmentation stages (basic, complete, and enhanced) to segment thin vessels located close to the skull. All these modules are designed to be computationally efficient. Our OFF-eNET, evaluated using 70 CTA image volumes, resulted in 90.75% performance in the segmentation of intracranial blood vessels and outperformed the state-of-the-art counterparts.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Reproduced in accordance with the publisher's self-archiving policy. |
Keywords: | Convolution neural network; computed tomography angiography; dilated convolution; inception module; upskip connection; intracranial vessels segmentation |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 05 Jun 2020 14:37 |
Last Modified: | 16 Nov 2021 11:27 |
Status: | Published |
Publisher: | Institute of Electrical and Electronics Engineers |
Refereed: | Yes |
Identification Number: | 10.1109/TIP.2020.2999854 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:161477 |