Kaspar, T.C., Ryan, J.V., Pantano, C.G. et al. (15 more authors) (2019) Physical and optical properties of the International Simple Glass. npj Materials Degradation, 3 (1). 15. ISSN 2397-2106
Abstract
Radioactive waste immobilization is a means to limit the release of radionuclides from various waste streams into the environment over a timescale of hundreds to many thousands of years. Incorporation of radionuclide-containing wastes into borosilicate glass during vitrification is one potential route to accomplish such immobilization. To facilitate comparisons and assessments of reproducibility across experiments and laboratories, a six-component borosilicate glass (Si, B, Na, Al, Ca, Zr) known as the International Simple Glass (ISG) was developed by international consensus as a compromise between simplicity and similarity to waste glasses. Focusing on a single glass composition with a multi-pronged approach utilizing state-of-the-art, multi-scale experimental and theoretical tools provides a common database that can be used to assess relative importance of mechanisms and models. Here we present physical property data (both published and previously unpublished) on a single batch of ISG, which was cast into individual ingots that were distributed to the collaborators. Properties from the atomic scale to the macroscale, including composition and elemental impurities, phase purity, density, thermal properties, mechanical properties, optical and vibrational properties, and the results of molecular dynamics simulations are presented. In addition, information on the surface composition and morphology after polishing is included. Although the existing literature on the alteration of ISG is not extensively reviewed here, the results of well-controlled static alteration experiments are presented here as a point of reference for other performance investigations.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 24 May 2019 13:22 |
Last Modified: | 26 May 2019 18:18 |
Status: | Published |
Publisher: | Nature Research |
Refereed: | Yes |
Identification Number: | 10.1038/s41529-019-0069-2 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:146537 |