Lai, F., Qu, S., Lewis, R. et al. (3 more authors) (2019) The influence of ultrasonic surface rolling on the fatigue and wear properties of 23-8N engine valve steel. International Journal of Fatigue. ISSN 0142-1123
Abstract
An ultrasonic surface rolling (USR) technique was employed for the first time as a method to enhance the fatigue and wear resistance of 33Cr23Ni8Mn3N (23–8N) austenitic engine valve steel. The microstructure of the modified layer on the material surface was characterised by scanning electron microscopy (SEM) coupled with electron back scatter diffraction (EBSD) and transmission electron microscope (TEM) methods. Nanoscale lamellar grains were discovered on the top surface of the treated material, and an increase of compressive residual stress and microhardness of the surface material observed. A comparative fretting wear test and a rotating bending fatigue test were performed out to verify the surface enhancement effect. Fractured and worn faces of specimens were evaluated through utilizing SEM and energy–dispersive spectroscopy (EDS). Compared to the untreated material, the coefficient of friction of USR treated material was significantly reduced, and the wear resistance was improved. The fatigue strength of a specimen treated at 25 °C was increased from 528 MPa to 730 MPa (38.3 %). At 650 °C, the fatigue strength increased from 345 MPa to 400 MPa (15.9 %). The fatigue resistance extension and wear resistance improvement of treated specimen can be attributed to a combination of beneficial compressive residual stress, work hardening, and the modified microstructure with fine-grains in the surface layer, and thus demonstrates the validity of this novel technique.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Elsevier. This is an author-produced version of a paper subsequently published in International Journal of Fatigue. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
Keywords: | ultrasonic surface rolling; surface enhancement; engine valve steel; fatigue properties; wear properties |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Mechanical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 10 Apr 2019 14:10 |
Last Modified: | 09 Apr 2020 00:38 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.ijfatigue.2019.04.010 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:144750 |
Download
Filename: Accepted manuscript (Int J Fatigue in press online version).pdf
Licence: CC-BY-NC-ND 4.0