Schmiedel, T, Kjoberg, S, Planke, S et al. (5 more authors) (2017) Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid-Norwegian margin. Interpretation, 5 (3). SK23-SK38. ISSN 2324-8858
Abstract
The emplacement of igneous intrusions into sedimentary basins mechanically deforms the host rocks and causes hydrocarbon maturation. Existing models of host-rock deformation are investigated using high-quality 3D seismic and industry well data in the western Møre Basin offshore mid-Norway. The models include synemplacement (e.g., elastic bending-related active uplift and volume reduction of metamorphic aureoles) and postemplacement (e.g., differential compaction) mechanisms. We use the seismic interpretations of five horizons in the Cretaceous-Paleogene sequence (Springar, Tang, and Tare Formations) to analyze the host rock deformation induced by the emplacement of the underlying saucer-shaped Tulipan sill. The results show that the sill, emplaced between 55.8 and 54.9 Ma, is responsible for the overlying dome structure observed in the seismic data. Isochron maps of the deformed sediments, as well as deformation of the younger postemplacement sediments, document a good match between the spatial distribution of the dome and the periphery of the sill. The thickness t of the Tulipan is less than 100 m, whereas the amplitude f of the overlying dome ranges between 30 and 70 m. Spectral decomposition maps highlight the distribution of fractures in the upper part of the dome. These fractures are observed in between hydrothermal vent complexes in the outer parts of the dome structure. The 3D seismic horizon interpretation and volume rendering visualization of the Tulipan sill reveal fingers and an overall saucer-shaped geometry. We conclude that a combination of different mechanisms of overburden deformation, including (1) elastic bending, (2) shear failure, and (3) differential compaction, is responsible for the synemplacement formation and the postemplacement modification of the observed dome structure in the Tulipan area.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 Society of Exploration Geophysicists and American Association of Petroleum Geologists. This is an author produced version of a paper published in Interpretation. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | 3D, interpretation, volcanics, Europe |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst of Geophysics and Tectonics (IGT) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 15 Oct 2018 13:07 |
Last Modified: | 15 Oct 2018 13:21 |
Status: | Published |
Publisher: | Society of Exploration Geophysicists |
Identification Number: | 10.1190/INT-2016-0155.1 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:137175 |