White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Quantum chaos in the configurational quantum cat map

Weigert, S. (1993) Quantum chaos in the configurational quantum cat map. Physical Review A. pp. 1780-1798. ISSN 1050-2947

Full text available as:
[img]
Preview
Text (weigerts16.pdf)
weigerts16.pdf

Download (3033Kb)

Abstract

The motion of a classical or quantum-mechanical charged particle in the unit square (with periodic boundary conditions) is investigated under the influence of periodic electromagnetic fields. It is shown that the external fields can be chosen in such a way that the configuration space of the particle is mapped periodically to itself according to Arnold’s cat map. The time evolution of the quantum system shows the same degree of irregularity as does the classical time evolution which is completely dominated by the properties of the hyperbolic map. In particular, the eigenfunctions of the Floquet operator are determined analytically, and, as an immediate consequence, the spectrum of quasienergies in this system is seen to be absolutely continuous. Furthermore, spatial correlations decay exponentially. The observed features are in striking similarity to properties of classically chaotic systems; for example, long-time predictions of the future behavior of the system turn out to be extremely sensitive to the specification of the initial state. In other words, the time evolution of the quantum system is algorithmically complex. These phenomena, based on the formation of arbitrarily fine structures in the two-dimensional configuration space, require that the system absorb energy (provided by the external kicks) at an exponential rate.

Item Type: Article
Copyright, Publisher and Additional Information: © 1993 The American Physical Society. Reproduced in accordance with the publisher's self-archiving policy.
Institution: The University of York
Academic Units: The University of York > Mathematics (York)
Depositing User: Repository Officer
Date Deposited: 23 Jun 2006
Last Modified: 16 Oct 2014 18:51
Published Version: http://dx.doi.org/10.1103/PhysRevA.48.1780
Status: Published
Refereed: Yes
Related URLs:
URI: http://eprints.whiterose.ac.uk/id/eprint/1362

Actions (repository staff only: login required)