Adeniran, I, Whittaker, DG orcid.org/0000-0002-2757-5491, El Harchi, A et al. (2 more authors) (2017) In silico investigation of a KCNQ1 mutation associated with short QT syndrome. Scientific Reports, 7 (1). 8469. ISSN 2045-2322
Abstract
Short QT syndrome (SQTS) is a rare condition characterized by abnormally ‘short’ QT intervals on the ECG and increased susceptibility to cardiac arrhythmias and sudden death. This simulation study investigated arrhythmia dynamics in multi-scale human ventricle models associated with the SQT2-related V307L KCNQ1 ‘gain-of-function’ mutation, which increases slow-delayed rectifier potassium current (IKs). A Markov chain (MC) model recapitulating wild type (WT) and V307L mutant IKs kinetics was incorporated into a model of the human ventricular action potential (AP) for investigation of QT interval changes and arrhythmia substrates. In addition, the degree of simulated IKs inhibition necessary to normalize the QT interval and terminate re-entry in SQT2 conditions was quantified. The developed MC model accurately reproduced AP shortening and reduced effective refractory period associated with altered IKs kinetics in homozygous (V307L) and heterozygous (WT-V307L) mutation conditions, which increased the lifespan and dominant frequency of re-entry in 3D human ventricle models. IKs reductions of 58% and 65% were sufficient to terminate re-entry in WT-V307L and V307L conditions, respectively. This study further substantiates a causal link between the V307L KCNQ1 mutation and pro-arrhythmia in human ventricles, and establishes partial inhibition of IKs as a potential anti-arrhythmic strategy in SQT2.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Biomedical Sciences (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 17 Jan 2018 15:41 |
Last Modified: | 17 Jan 2018 15:41 |
Status: | Published |
Publisher: | Nature Publishing Group |
Identification Number: | 10.1038/s41598-017-08367-2 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:126322 |