McMinn, P.S. orcid.org/0000-0001-9137-7433, Wright, C.J., McCurdy, C.J. et al. (1 more author) (2019) Automatic detection and removal of ineffective mutants for the mutation analysis of relational database schemas. IEEE Transactions on Software Engineering, 45 (5). pp. 427-463. ISSN 0098-5589
Abstract
Data is one of an organization’s most valuable and strategic assets. Testing the relational database schema, which protects the integrity of this data, is of paramount importance. Mutation analysis is a means of estimating the fault-finding “strength” of a test suite. As with program mutation, however, relational database schema mutation results in many “ineffective” mutants that both degrade test suite quality estimates and make mutation analysis more time consuming. This paper presents a taxonomy of ineffective mutants for relational database schemas, summarizing the root causes of ineffectiveness with a series of key patterns evident in database schemas. On the basis of these, we introduce algorithms that automatically detect and remove ineffective mutants. In an experimental study involving the mutation analysis of 34 schemas used with three popular relational database management systems—HyperSQL, PostgreSQL, and SQLite—the results show that our algorithms can identify and discard large numbers of ineffective mutants that can account for up to 24% of mutants, leading to a change in mutation score for 33 out of 34 schemas. The tests for seven schemas were found to achieve 100% scores, indicating that they were capable of detecting and killing all non-equivalent mutants. The results also reveal that the execution cost of mutation analysis may be significantly reduced, especially with “heavyweight” DBMSs like PostgreSQL.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Reproduced in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 12 Jan 2018 16:47 |
Last Modified: | 14 Aug 2020 13:57 |
Status: | Published |
Publisher: | Institute of Electrical and Electronics Engineers |
Refereed: | Yes |
Identification Number: | 10.1109/TSE.2017.2786286 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:126146 |