White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state

Brook, B.S., Falle, S.A.E.G. and Pedley, T.J. (1999) Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. Journal of Fluid Mechanics, 396. pp. 223-256. ISSN 0022-1120

Full text available as:
[img]
Preview
Text
falle3.pdf

Download (874Kb)

Abstract

Unsteady flow in collapsible tubes has been widely studied for a number of different physiological applications; the principal motivation for the work of this paper is the study of blood flow in the jugular vein of an upright, long-necked subject (a giraffe). The one-dimensional equations governing gravity- or pressure-driven flow in collapsible tubes have been solved in the past using finite-difference (MacCormack) methods. Such schemes, however, produce numerical artifacts near discontinuities such as elastic jumps. This paper describes a numerical scheme developed to solve the one-dimensional equations using a more accurate upwind finite volume (Godunov) scheme that has been used successfully in gas dynamics and shallow water wave problems. The adapatation of the Godunov method to the present application is non-trivial due to the highly nonlinear nature of the pressure–area relation for collapsible tubes.

The code is tested by comparing both unsteady and converged solutions with analytical solutions where available. Further tests include comparison with solutions obtained from MacCormack methods which illustrate the accuracy of the present method.

Finally the possibility of roll waves occurring in collapsible tubes is also considered, both as a test case for the scheme and as an interesting phenomenon in its own right, arising out of the similarity of the collapsible tube equations to those governing shallow water flow.

Item Type: Article
Copyright, Publisher and Additional Information: © Cambridge University Press
Academic Units: The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds)
Depositing User: Repository Assistant
Date Deposited: 25 May 2006
Last Modified: 08 Feb 2013 16:49
Published Version: http://journals.cambridge.org/action/displayIssue?...
Status: Published
Publisher: Cambridge University Press
Refereed: Yes
URI: http://eprints.whiterose.ac.uk/id/eprint/1237

Actions (login required)

View Item View Item