Samset, BH, Myhre, G, Forster, PM orcid.org/0000-0002-6078-0171 et al. (14 more authors) (2018) Weak hydrological sensitivity to temperature change over land, independent of climate forcing. npj Climate and Atmospheric Science, 1. 3. ISSN 2397-3722
Abstract
We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2–3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3–5%/K, while the slow land HS is only 0–2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018, The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Climate and Earth system modelling; Projection and prediction |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Funding Information: | Funder Grant number US Department of Energy Project 1552083 NERC NE/M017176/1 NERC NE/N006038/1 ECMRWF European Centre Medium No ref number |
Depositing User: | Symplectic Publications |
Date Deposited: | 02 May 2017 10:41 |
Last Modified: | 25 May 2018 19:38 |
Status: | Published |
Publisher: | Nature Publishing Group |
Identification Number: | 10.1038/s41612-017-0005-5 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:115808 |