White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy

Moreno-Atanasio, R. and Ghadiri, M. (2006) Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy. Chemical Engineering Science, 61 (8). pp. 2476-2481. ISSN 0009-2509

[img] Text
Available under licence : See the attached licence file.

Download (269Kb)


Agglomerates are ubiquitous as intermediate or manufactured products in chemical, pharmaceutical and food industries. During handling and processing they may suffer breakage if they are weak. On the other hand, if they are too strong, their dispersion and disintegration could be difficult. The control of their mechanical strength is therefore highly desirable. However, the analysis of agglomerate strength is complex due to the large number of parameters that influence agglomerate behaviour, such as the primary particle size, density and elastic modulus, and the interparticle bond strength.

A simple mechanistic model is presented here which relates the number of broken contacts in agglomerate due to impact velocity, interparticle adhesion energy and the particle properties of the particles forming the agglomerate. The model is based on the hypothesis that the energy used to break contacts during impact is proportional to the incident kinetic energy of the agglomerate. The damage ratio defined as the ratio of broken contacts to the initial number of bonds is shown to depend on the dimensionless group, Δ, in the form (ρV2D5/3E2/3)/ Γ5/3, where V is the impact velocity, E the elastic modulus, D the particle diameter, ρ the particle density and Γ the interface energy. This dimensionless group, Δ, incorporates the Weber number, (ρDV2/Γ), which was previously shown to be influential in agglomerate breakage, and may be presented in the form, Δ=WeIe2/3 , where Ie = ED/ Γ.

The predicted dependency of the damage ratio on the surface energy has been tested using Distinct Element Method (DEM). Four different agglomerates have been formed and impacted against a target for three different values of the surface energy of the primary particles. The simulation results show that the effect of surface energy is better described by the above mechanistic model than by the Weber number alone, as previously used to characterise the impact strength of agglomerates.

Item Type: Article
Copyright, Publisher and Additional Information: Copyright © 2005 Elsevier Ltd. This is an author produced version of an article published in Chemical Engineering Science. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.
Keywords: agglomeration, granulation, impact, modelling, simulation, surface energy
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical & Process Engineering (Leeds) > Institute for Particle Science and Engineering (Leeds)
Depositing User: Repository Officer
Date Deposited: 15 Mar 2006
Last Modified: 10 Jun 2014 02:55
Published Version: http://dx.doi.org/10.1016/j.ces.2005.11.019
Status: Published
Refereed: Yes
Identification Number: 10.1016/j.ces.2005.11.019
URI: http://eprints.whiterose.ac.uk/id/eprint/1104

Actions (repository staff only: login required)