Fenton, A.K. (2016) CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nature Microbiology.
Abstract
Most bacterial cells are surrounded by a peptidoglycan cell wall that is essential for their integrity. The major synthases of this exoskeleton are called penicillin-binding proteins (PBPs)1,2 . Surprisingly little is known about how cells control these enzymes, given their importance as drug targets. In the model Gram-negative bacterium Escherichia coli, outer membrane lipoproteins are critical activators of the class A PBPs (aPBPs)3,4 , bifunctional synthases capable of polymerizing and crosslinking peptidoglycan to build the exoskeletal matrix1 . Regulators of PBP activity in Gram-positive bacteria have yet to be discovered but are likely to be distinct due to the absence of an outer membrane. To uncover Gram-positive PBP regulatory factors, we used transposon-sequencing (Tn-Seq)5 to screen for mutations affecting the growth of Streptococcus pneumoniae cells when the aPBP synthase PBP1a was inactivated. Our analysis revealed a set of genes that were essential for growth in wild-type cells yet dispensable when pbp1a was deleted. The proteins encoded by these genes include the conserved cell wall elongation factors MreC and MreD2,6,7, as well as a membrane protein of unknown function (SPD_0768) that we have named CozE (coordinator of zonal elongation). Our results indicate that CozE is a member of the MreCD complex of S. pneumoniae that directs the activity of PBP1a to the midcell plane where it promotes zonal cell elongation and normal morphology. CozE homologues are broadly distributed among bacteria, suggesting that they represent a widespread family of morphogenic proteins controlling cell wall biogenesis by the PBPs.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016 Nature Publishing Group. This is an author produced version of a paper subsequently published in Nature Microbiology. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Molecular Biology and Biotechnology (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 14 Dec 2016 11:41 |
Last Modified: | 22 May 2020 15:47 |
Published Version: | http://doi.org/10.1038/nmicrobiol.2016.237 |
Status: | Published |
Publisher: | Nature Publishing Group |
Refereed: | Yes |
Identification Number: | 10.1038/nmicrobiol.2016.237 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:109472 |