Martynov, S.B., Daud, N.K., Mahgerefteh, H. et al. (2 more authors) (2016) Impact of stream impurities on compressor power requirements for CO2 pipeline transportation. International Journal of Greenhouse Gas Control. ISSN 1750-5836
Abstract
The economic viability of Carbon Capture and Sequestration (CCS) as a means of mitigating CO2 emissions is significantly dependent on the minimisation of costs associated with the compression and transportation of the captured CO2. This paper describes the development and application of a rigorous thermodynamic model to compute and compare power requirements for various multistage compression strategies for CO2 streams containing typical impurities originating from various capture technologies associated with industrial and power emission sectors. The compression options examined include conventional multistage integrally geared centrifugal compressors, supersonic shockwave compressors and multistage compression combined with subcritical liquefaction and pumping. The study shows that for all the compression options examined, the compression power reduces with the increase in the purity of the CO2 stream, while the inter-stage cooling duty is predicted to be significantly higher than the compression power demand. For CO2 streams carrying less than 5% impurities, multistage compression combined with liquefaction and subsequent pumping from ca 62 bar pressure can offer higher efficiency than conventional gas-phase compression. In the case of a raw/dehumidified oxy-fuel CO2 stream of ca 85% purity, subcritical liquefaction at 62 bar pressure is shown to increase the cooling duty by ca 50% as compared to pure CO2.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016 Elsevier. This is an author produced version of a paper subsequently published in International Journal of Greenhouse Gas Control. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
Keywords: | CCS; CO2 impurities; Oxy-fuel; Pre-combustion; Compression power; Cooling duty |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 23 Nov 2016 11:40 |
Last Modified: | 13 Sep 2017 07:04 |
Published Version: | http://doi.org/10.1016/j.ijggc.2016.08.010 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.ijggc.2016.08.010 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:108140 |