White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks

Waterworth, W.M., Kozak, J., Provost, C.M., Bray, C.M., Angelis, K.J. and West, C.E. (2009) DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks. BMC Plant Biology , 9. ISSN 1471-2229

Full text available as:

Abstract

BACKGROUND DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability.

RESULTS Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs) and also double strand breaks (DSBs), implicating AtLIG1 in repair of both these lesions.

CONCLUSIONS Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.

Item Type: Article
Copyright, Publisher and Additional Information: © 2009 Waterworth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Biological Sciences (Leeds)
Depositing User: Sherpa Assistant
Date Deposited: 06 May 2010 11:18
Last Modified: 23 Jun 2014 16:26
Published Version: http://dx.doi.org/10.1186/1471-2229-9-79
Status: Published
Publisher: Biomed Central
Refereed: Yes
Identification Number: 10.1186/1471-2229-9-79
Related URLs:
URI: http://eprints.whiterose.ac.uk/id/eprint/10802

Actions (login required)

View Item View Item