Baxter, J.E. and Winstanley, E. (2008) On the Existence of Soliton and Hairy Black Hole Solutions of su(N) Einstein-Yang-Mills Theory with a Negative Cosmological Constant. Classical and Quantum Gravity , 25 (24). Art no.245014. ISSN 0264-9381
Abstract
We study the existence of soliton and black hole solutions of four-dimensional Einstein–Yang–Mills theory with a negative cosmological constant. We prove the existence of non-trivial solutions for any integer N, with N − 1 gauge field degrees of freedom. In particular, we prove the existence of solutions in which all the gauge field functions have no zeros. For fixed values of the parameters (at the origin or event horizon, as applicable) defining the soliton or black hole solutions, if the magnitude of the cosmological constant is sufficiently large, then the gauge field functions all have no zeros. These latter solutions are of special interest because at least some of them will be linearly stable.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematics and Statistics (Sheffield) |
Depositing User: | Mrs Megan Hobbs |
Date Deposited: | 19 Mar 2010 12:29 |
Last Modified: | 17 Nov 2015 07:04 |
Published Version: | http://dx.doi.org/10.1088/0264-9381/25/24/245014 |
Status: | Published |
Publisher: | Institute of Physics |
Identification Number: | 10.1088/0264-9381/25/24/245014 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:10573 |