White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Decoupling Dark Energy from Matter

Brax, P.H., van de Bruck, C., Martin, J. and Davis, A.C. (2009) Decoupling Dark Energy from Matter. Journal of Cosmology and Astroparticle Physics , 9 (32). ISSN 1475-7516

[img] Text

Download (237Kb)


We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.

Item Type: Article
Copyright, Publisher and Additional Information: © 2009 IOP. This is an author produced version of a paper subsequently published in Journal of Cosmology and Astroparticle. Uploaded in accordance with the publisher's self-archiving policy.
Institution: The University of Sheffield
Academic Units: The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematics and Statistics (Sheffield)
Depositing User: Mrs Megan Hobbs
Date Deposited: 22 Mar 2010 16:38
Last Modified: 18 Nov 2015 07:33
Published Version: http://dx.doi.org/10.1088/1475-7516/2009/09/032
Status: Published
Publisher: IOP Science
Identification Number: 10.1088/1475-7516/2009/09/032
Related URLs:
URI: http://eprints.whiterose.ac.uk/id/eprint/10566

Actions (repository staff only: login required)