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Currently, there is much interest in discovering analytically tractable (3 + 1)-dimensional models
that describe interacting fermions with emerging topological properties. Towards that end we present
a three-dimensional tight-binding model of spinless interacting fermions that reproduces, in the low
energy limit, a (3 + 1)-dimensional Abelian topological quantum field theory called BF model. By
employing a mechanism equivalent to the Haldane’s Chern insulator, we can turn the non-interacting
model into a three-dimensional chiral topological insulator. We then isolate energetically one of the
two Fermi points of the lattice model. In the presence of suitable fermionic interactions, the system,
in the continuum limit, is equivalent to a generalised (3 + 1)-dimensional Thirring model. The low
energy limit of this model is faithfully described by the BF theory. Our approach directly establishes
the presence of (2 + 1)-dimensional BF theory at the boundary of the lattice and it provides a way
to detect the topological order of the model through fermionic density measurements.

PACS numbers: 11.15.Yc, 71.10.Fd

I. INTRODUCTION

The interest in strongly interacting fermionic systems
has recently found new applications related to topological
phases of matter. In the non-interacting case a complete
classification [1, 2] of standard topological insulators [3]
of free fermions exists. Unfortunatelly, it is not possible
to straightforwardly extend these results to the interact-
ing case. For example, it is not possible to generalise
the band theory approach to topological invariants, so
more flexible approaches have to be invented [4]. The
introduction of interactions in a free fermion system can
either connect different phases of matter [5] or give ac-
cess to new ones [6]. Examples of the latter are the two-
dimensional topological Mott insulators [7], where inter-
actions can open an insulating gap and drive the system
to topological phases not accessible in the non-interacting
case.
Much progress in the study of interacting fermionic

systems has already been made in 1+1 and 2+1 dimen-
sions [8, 9]. In three spatial dimensions the situation is
somehow less clear, though some analysis has been al-
ready carried out [6, 10]. Complications arise already in
the effective description, where the Chern-Simons the-
ory [11] only holds in even spatial dimensions with bro-
ken time reversal symmetry. A natural generalization
of Chern-Simons theory is the topological BF theory,
which is well defined in any dimensions [12]. In two
spatial dimensions BF theories can be interpreted as dou-
ble Chern-Simons theories, allowing for the description of
time-reversal symmetric topological insulators [13]. BF
theories have also been proposed as effective theories for
describing topological insulators in any dimension [14–
18]. Nevertheless, very few interacting fermionic models
that give rise to BF theory are available.
Here we make another step into the exploration of

interactions-driven phases of matter. Our starting point
is a cubic lattice of spinless fermions. For particular val-
ues of the couplings and in the absence of interactions the
system becomes a chiral topological insulator [19]. Our
approach is similar in spirit to Haldane’s Chern insula-
tor [20], which gives us the ability to arbitrarily tune
the asymmetry in the energy spectrum of the theory.
This allows us to enter a regime where the dynamics,
associated with one of the two Dirac fermions present
in the model, is adiabatically eliminated [21, 22]. Sub-
sequently, we introduce interactions between the tight-
binding fermions to obtain a generalization of the (3+1)-
dimensional massive Thirring model [23] with a tensorial
current. By applying a series of transformations [24] we
show that our system simulates a (3 + 1)-dimensional
topological massive gauge theory [25, 26]. The short dis-
tance behaviour of this theory is dominated by a Maxwell
term. The large distance behaviour is characterised by
an Abelian BF term which is topological in nature and
it gives mass to the gauge field. The connection of the
fermionic tight-binding model to the BF theory allows
us to directly obtain that the boundary of the lattice is
described by the (2+ 1)-dimensional BF theory. Finally,
we identify analytical expressions for topological invari-
ants associated with the model and relate them to physi-
cal local fermionic observables. This method allows us to
probe the topological properties of our three-dimensional
system and provides a possible platform for simulating
(3+1)-dimensional gauge theories in the laboratory with
cold atoms [27] in optical lattices [28, 29].
This article is organized as follows. In section II we in-
troduce a free fermion tight binding model. We then
(section IIA) focus on the kinematic sector by analysing
the (gapless) energy spectrum, the symmetry properties
(introduced in Appendix A), and the low energy limit of
the model. In section II B we consider the effect of ad-
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ditional mass terms which open a gap in the spectrum
and allows us (section IIC) to show the existence of a
chiral topological insulating phase (and its formal analo-
gies with he Haldane model). In section III we leave the
free fermion description by introducing 4-bodies inter-
actions in the tight binding model (section IIIA). We
then show that in the low energy limit the model is de-
scribed by bosonic degrees of freedom (section III B) and
we find (section III C) the corresponding effective theory
through a duality operation. Interestingly, the effective
theory contains a purely topological term. We then con-
nect the effective and microscopic theory by proposing
opportune bosonization rules (section IIID). In section
III E we explore two features of the theory in its purely
topological regime. We find that the boundary of the
model is described by a topological theory III E 1 (more
details can be found in Appendix B). Finally, we describe
microscopic fermionic observables (section III E 2) which
can be used to test the topological features of the model
(more details can be found in Appendix C).

II. FREE FERMION MODEL
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FIG. 1: The tight-binding model, where spinless fermions
(yellow) reside on the vertices of a cubic lattice. The plaque-
tte unit cell has four fermions labelled a, b, c, d. The fermions
tunnel along the lattice via Hamiltonian (1). Tunnelling takes
place along the edges of the cubic lattice (black) with cou-
pling t and a phase that is determined by the black arrows,
i.e. χt = i for positive and χt = −i for negative direction. A
purely imaginary staggering term in the y-direction (orange)
has coupling δt and a phase χδt with the same phase conven-
tion as χt. Tunnelling along the diagonals of the cube (green)

have coupling t̄ and phase χt̄ = it̄e±iφ with φ ∈ [0, π/2], where
the negative (positive) sign is chosen for full (dashed) lines.

Let us begin with an overview of the model. We

consider spinless fermions, localised on the vertices of
a three-dimensional cubic lattice Λ, as shown in Fig. 1.
The tight-binding Hamiltonian is given by

H = t
∑

〈i,j〉

χt
ijf

†
i fj+δt

∑

〈i,j〉y

χδt
ij f

†
i fj−

t̄

2

∑

〈〈〈i,j〉〉〉

χt̄
ijf

†
i fj, (1)

where i, j ∈ Λ and f†
i and fi are the creation and

annihilation fermion operators at position i of the
lattice. We define planar unit cells populated by four
fermion flavours f ∈ {a, b, c, d}, as shown in Fig. 1. Let
us analyse each term of the Hamiltonian. The first term,
which we call kinematic, has coupling t and corresponds
to nearest-neighbour 〈i, j〉 hopping. The phases χt are
such to create a net π flux through each plaquette.
The term proportional to δt describes a staggering
between sites along the y-direction indicated by 〈i, j〉y.
The last term corresponds to tunnelling between the
next-next-nearest neighbouring sites, 〈〈〈i, j〉〉〉, with
coupling t̄. The phase factors χt, χδt and χt̄ are defined
in Fig. 1. Let us now study this model more explicitely.

The lattice of the unit cells (in blue in Fig. (1)) is given
by: Λ̄ = {i ∈ R : i = n1s1 + n2s2 + n3s3}, with ni ∈ N

and s1 = (2, 0, 0), s2 = (0, 2, 0), s3 = (1, 0, 1) written in
units of a fixed reference length. The Hamiltonian in Eq.
(1) can be written as

H = H0 +Hm , (2)

where H0 = t
∑

〈i,j〉 χ
t
ijf

†
i fj is a kinematic Hamiltonian

(defined through the black links in Fig. (1)) which has
gapless spectrum. In order to open a gap in the model

we introduce the Hamiltonian Hm = δt
∑

〈i,j〉y
χδt
ij f

†
i fj −

t̄
2

∑

〈〈〈i,j〉〉〉 χ
t̄
ijf

†
i fj which is defined along the red and

green links in Fig. (1). Let us now define the two terms
of the Hamiltonian one by one.

A. The kinematic model

As can be seen by inspecting Eq. (2) and Fig. (1), the
kinematic Hamiltonian of the model can be written as

H0 = it
∑

i

[

(−a†i bi + b†i di + d†i ci + c†i ai)

+(a†
i+~s1

bi + c†
i+~s1

di + d†i bi+~s2 + a†
i+~s2

ci)

+(b†
i+~s3−~s1

ai + b†i ai+~s3 + d†ci+~s3 + d†
i+~s3−~s1

ci)
]

+h.c. ,
(3)

where i ∈ Λ̄ is intended and where t is an energy scale.
This Hamiltonian is known [30] to give rise in the con-
tinuum limit to two massless Dirac fermions. Let us now
calculate the spectrum explicitely.
The reciprocal lattice is defined as Λ̄p = {p ∈ R

3 :
p =

∑

i nipi} where the vectors pi satisfy pi · sj =
2πδij and are explicitely defined to be p1 = π(1, 0,−1),
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p2 = π(0, 1, 0), p3 = 2π(0, 0, 1). The Brillouin zone BZ
is defined as the elementary cell in the reciprocal lat-
tice BZ = {p ∈ Λ̄p : p = pipi} with pi ∈ [0, 1). A
generic vector in the Brillouin zone can be written as
p ≡ (px, py, pz) = π(p1, p2, 2p3 − p1) so that px = πp1,
py = πp2, pz = π(2p3 − p1) = π2p3 − px. The periodic
invariance of the phase space allows us to parametrize
the Brilluin zone in a different and somehow more con-
venient way. We can in fact define it as BZ = {p ∈ Λ̄p :
p = (px, py, pz) with px ∈ [0, π), py ∈ [0, π), pz ∈ [0, 2π)
where the volume of the Brillouin zone is 2π3. We now
have all the ingredients to define the Fourier transform
ar =

∑

p∈BZ e
−ip~rap and analogously for b, c, d. By in-

troducing the Fourier transformed operators inside the
Hamiltonian in Eq. (3) we find

H0 = it
∑

p

[

(−1 + e2πip1 − e−2πi(p3−p1) − e2πip3)a†pbp
+(−1 + e2πip2)a†pcp + i(1− e2πip2)b†pdp
+(−1 + e2πip1 − e2πip3 − e−2πi(p3−p1))c†pdp

]

+h.c.
= it

∑

p

[

(−1 + e2ipx − e−i(pz−px) − ei(pz+px))a†pbp
+(e2ipy − 1)a†pcp + i(1− e2ipy )b†pdp
+ (−1 + e2ipx − ei(pz+px) − e−i(pz−px))c†pdp

]

+h.c.

=
∑

p Ψ′†H̄ ′
0Ψ

′ ,

(4)
with

Ψ′ =







ap
bp
cp
dp






(5)

and with the kernel H̄ ′
0 given by

H̄ ′
0 = t







0 B C 0
B∗ 0 0 −C
C∗ 0 0 B
0 −C∗ B∗ 0






, (6)

where we have defined B = i(−1 + e2ipx − e−i(pz−px) −
ei(pz+px)) and C = i(e2ipy −1). From the explicit expres-
sion ofH0 we can easily see that the set of vertices a and d
only interacts with the set b and c. This condition defines
a chiral symmetry. In fact, such a symmetry describes
the existence of a bipartition of the lattice “broken” by
all couplings (see Appendix A for more details). The ex-
istence of chiral symmetry allows to cast the Hamiltonian
in an off-block diagonal form. In our case this is easily
seen after the definition of a new basis

Ψ =







ap
dp
cp
bp






, (7)

the Hamiltonian takes the form

H0 = Ψ†H̄0Ψ , (8)

with

H̄0 = t







0 0 C B
0 0 B∗ −C∗

C∗ B 0 0
B∗ −C 0 0






. (9)

This Hamiltonian has eigenvalues (with degeneracy 2)
given by

E0 = ±t
√

6− 2 cos 2px − 2 cos 2py + 2 cos 2pz . (10)

The spectrum has then two double degenerate bands and
it is gapped everywhere in the Brillouin zone except for
two Fermi points where the two bands touch each other.
The two independent Fermi points are given by

{

P+ = (0, 0, π
2 )

P− = (0, 0, π
2 + π) .

(11)

In order to study the behaviour around the Fermi points
we now define the following matrices

αx =







0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0






, αy =







0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0






,

αz =







0 0 0 +i
0 0 −i 0
0 i 0 0
−i 0 0 0






,

(12)
which satisfy the algebra

{αi, αj} = 2δij . (13)

We now introduce coordinates around the Fermi points
~p = ~P± + (kx, ky, kz) for small kx, ky and kz, so that
the Hamiltonian around the Fermi points looks like

H̄0
± = c(kxαx + kyαy ± kzαz) , (14)

where c = 2t/~. The Hamiltonians in Eq. (14) represent
two (massless) Dirac fermions.

1. Symmetries

The symmetries of the kinematic model can be studied
by analyzing the Hamiltonian kernel (9). In particular
we are interested in checking the behaviour of the model
under time-reversal, particle-hole and chiral symmetry.
For an introduction to the defintions of these symmetries
we refer to Appendix A. In the table below we express
the conditions on the Hamiltonian kernel under which
these symemtries are satisfied.
Inspection of the Hamiltonian kernel given in (9) shows
us that H̄∗

0 (−p) = −H̄0(p). This condition means that
the system breaks time-reversal symmetry and preserves
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Symmetry Condition

Time Reversal H̄(p) = H̄∗(−p)
Particle-Hole H̄(p) = −H̄∗(−p)

Chiral ∃C̄s : C̄†
s = C̄−1

s : C̄sH̄(p) = −H̄(p)C̄s

FIG. 2: Energy bands for the full model described in Eq.
(1) as a function of the momentum variable pz for fixed
px = py = 0, in arbitrary units. The parameters δt and t̄
are tuned to open a gap. The model is in fact a description
of a chiral topological insulator. The dashed line represents
the Fermi energy and highlights the insulating properties of
the material.

particle-hole symmetry. We also have an explicit chiral
symmetry since the Hamiltonian anticommutes with the
matrix C̄s defined as

C̄s =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






, (15)

which is hermitian and unitary, as expected from the
block structure of the Hamiltonian in (9).

B. Gapped model

The kinematic model introduced in the previous sec-
tion is gapless. In order to study the topological features
of the model, we now introduce a gap term. In this way
the low energy physics of the model is described by a
massive Dirac fermion. Such a mass term has to anticom-
mute with all the α matrices ( Eq. (12)), square to the
identity and satisfy chiral symmetry. As can be checked,
the mass term has to be proportional to β = C̄sα

xαyαz.

In the chosen representation, we have

β =







0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0






. (16)

The implementation of such a mass term requires the
introduction of additional couplings between the sites a
and c and between b and d (as can be seen by inspecting
the explicit form of β in the basis given by Eq. (7)).
We introduce a staggering of the a, c and b, d couplings
along the y axis and a next-next nearest neighbor (NNN)
interactions as shown in Fig. (1). The staggering NNN
interactions give an equal (opposite) mass term to the
two Dirac fermions defined in Eq. (17). Explicitely we
define

Hm =
∑

~r iδta
†
~rc~r + iδtd†~rb~r

+ t̄
2

∑

~r ie
−iφa†~rc~r+~s3 + ieiφa†~rc~r−~s3

+ t̄
2

∑

~r ie
−iφd†~rb~r+~s3 + ieiφd†~rb~r−~s3

+h.c ,

(17)

where we have introduced difference energy scales δt and
t̄ for the staggering and NNN term respectively. We also
introduced a phase φ associated with the NNN couplings.
In momentum space this Hamiltonian becomes

Hm =
∑

p i(δt+ t̄ cos (pz + px + φ))a†pcp

+i(δt+ t̄ cos (pz + px + φ))d†~rb~r + h.c. .
(18)

In the basis of Eq. (7) the kernel in momentum space of
the interaction Hamiltonian H1 reads

H̄m = (δt+ t̄ cos (pz + px + φ))β , (19)

which is exactly what we are looking for since it gives a
contribution proportional to the matrix β which allows
the interpretation of a fermion mass as discussed above.
Now, we first notice that, when t̄ 6= 0 and φ 6= 0, π the
particle-hole symmetry is broken: H̄∗

m(−k) 6= −H̄m(k).
Incidentally, it is important to notice that by adding
these interactions we did not restore time reversal sym-
metry (already broken in the kinematic model) in the full
model.
The results of this section imply that the full Hamilto-
nian H = H0+Hm breaks time-reversal and particle-hole
symmetry while it is symmetric under chiral symmetry.
We also note that the joint presence of staggering and
NNN interactions allows to arbitrarly tune the fermion
masses at the two Fermi points. This is easily seen by
evaluating Eq. (19) at the two Fermi points to get two
independent masses. More precisely, let us define

{

m+c
2 = δt+ t̄ cos (π2 + φ)

m−c
2 = δt+ t̄ cos ( 3π2 + φ) ,

(20)

which, for the choice φ = π
2 becomes

{

m+c
2 = δt− t̄

m−c
2 = δt+ t̄ .

(21)
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With these definitions we get the expression for the full
Hamiltonian around the two Fermi points (to be com-
pared with Eq. (14))

H±(k) = Ψ̄±(cα · k+m±c
2β)Ψ± , (22)

where α = {αx, αy, αz} and k = {kx, ky, kz}. Notice
that when δt = 0 or φ = 0, π such an arbitrary tuning
would not be possible and we would get m+ = m−.
We end up this section with the book-keeping explicit
expression for the total Hamiltonian of the model of Eq.
(1). From Eq. (9) and (19) and with the definitions (12),
(16) and the ones below Eq. (6) the kernel H̄ of the total
Hamiltonian reads

H̄ = H̄0 + H̄m

= t(sin 2px − sin (px + pz)− sin (px − pz))α
x

+t sin 2pyα
y

+t(cos 2px − cos (px + pz)− cos (px − pz)− 1)αz

+(t cos 2py − t+ δt+ t̄ cos (px + pz + φ))β .
(23)

The spectrum of the total Hamiltonian has two double
generate bands

E = ±
√

(4− 2 cos 2px + 2 cos 2pz + |M |2) , (24)

where M =
(

e2ipy − 1 + δt+ t cos (px + py + φ)
)

.

C. Chiral Topological Insulator

Symmetry protected phases of matter for models de-
scribed by a free fermion model are completely classi-
fied [1]. This classification characterizes phases of mat-
ter within 10 different symmetry classes determined by
the symmetry properties under time-reversal, particle-
hole, and chiral symmetry. More specifically, one starts
by continuously deforming the Hamiltonian H that de-
scribes a free fermion model to a “reference” Hamiltonian
Q [31]. This Hamiltonian has all occupied (empty) bands
“flatten” with energy +1 (-1) in the whole Brillouin zone.
This can be done by defining the operator Q(k) as

Q(k) = 2P (k)− In+m , (25)

with

P (k) =

m
∑

i=1

|ui(k)〉 〈ui(k)| , (26)

where ui(k) i = 1, . . . ,m are the eigenvalues of the oc-
cupied bands for the total Hamiltonian and m(n) is the
number of occupied (empty) bands. The operator Q is
such that Q† = Q, Q2 = I and tr(Q) = m− n. This op-
erator has eigenvalues +1 and −1 corresponding to occu-
pied and empty bands. Each of the 10 symmetry classes
mentioned above determines a manifold B such that
Q : BZ → B. Within each symmetry class (and hence for
each manifold B), we want to classify the phases of matter

described by the reference Hamiltonians Q. Two Hamil-
tonians belong to the same phase if they can be continu-
ously deformed one into the other without encountering
a critical point. As shown in [1] one can classify such
phases through the d−th homotopy group πd of the man-
ifold B where d is the spatial dimension of the model. For
example, for the symmetry class A (all symmetries bro-
ken), we have that B is isomorphic to the Grassmannian:
B ≃ Gn,n+m(C) ≡ U(n+m)/U(n)× U(m). In fact, the
collection of all energy eigenvectors describes an element
of U(n+m) modulo the “gauge” symmetry relabeling the
eigenvectors corresponding to occupied and empty bands.
Now, for two spatial dimensions we have an infinite num-
ber of different phases as implied by π2(Gn,n+m(C)) = Z

(specifying, for example, the number of edge states for
the quantum Hall effect, which in fact, being a Chern
insulator, belongs to the A symmetry class). In three
spatial dimensions we have π3(Gn,n+m(C)) = e (where e
represent the group trivial element) so that only the triv-
ial phase is allowed. In three dimensions things can loose
their trivial nature when other symmetry classes are con-
sidered. Specifically, we are interested in the symmetry
class AIII where only chiral symmetry is preserved. in
this case n = m (positive and energy eigenstates come
in pairs, see Appendix A), and one can write Q in the
following block form [1]

Q(p) =

(

0 q(p)
q†(p) 0

)

, (27)

with q(p) ∈ U(n). Our model is then described by the
function q : BZ → B where B ≃ U(n). Contrary to the
class A example, we now find that π3(U(n)) = Z allowing
for non-trivial phases in three spatial dimensions. In fact,
we can define [1] a winding number ν (associated with the
map q) labelling all the possible phases as

ν =
1

24π3

∫

d3kǫabctr[(q−1∂aq)(q
−1∂bq)(q

−1∂cq)] ,

(28)
where a, b, c = 1, 2, 3.

1. Phase Diagram

We now want to see under which conditions on the
parameters of the full Hamiltonian of our model (Eq.
(1)) we can get non-zero winding number (Eq. (28)).
Let us first resume what we learned so far. First of all,
from the results of section II B we know that non-trivial
topological properties are forbidden for δt = 0 or
φ = {0, π}. In fact, in such a regime, the particle-hole
symmetry is not broken leading to the impossibility
to define a winding number as shown in [1]. Second,
we know that the conditions δt = t̄ cos (π2 + φ) and

δt = t̄ cos ( 3π2 + φ) imply (see Eq. (20)) that either
m+ = 0 or m− = 0 meaning that the system is critical.
Then, in these cases we expect the winding number in
Eq. (28) to be not well defined.
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Let us now draw the phase diagram of the model in the

Ν=-1 Ν=+1

Ν=0

Ν=0

00

00

t
�

∆
t

FIG. 3: Phase diagram of Hamiltonian (1) as a function of the
couplings δt and t̄ parameterised by the phase φ. The gapped
regions with non-trivial winding number ν = ±1 (yellow) are
separated by phase transition (blue lines) from the topologi-
cally trivial regions with ν = 0 (white). The winding number,
ν, is correlated with the sign of m+ ·m−, in the same way as in
Haldane’s model. The critical line for φ = π/2 (dashed blue)
and for generic value of φ ∈ [0, π/2] (solid blue) are depicted.

parameter space {δt, t̄} (see Fig. (3)). A gapless system
is described by the imposing the equations m+ = 0 and
m− = 0 (see Eq. (20)). Pictorially, these equations are
two straight lines in the δt, t̄ plane, parametrized by
the phase φ. They divide the parameter space δt, t̄ in
4 disconnected parts. We studied the behaviour of the
winding number in these 4 phases and we found that
two of them are in fact non-trivial (see Fig. 3). When
the parameter φ tends to 0 the two non-trivial phases
disappear as the two critical lines merge together. This
result is consistent to the fact that φ = 0 corresponds
to a system where particle hole symmetry is not broken
(see the analysis following Eq. (19)) which is a sufficient
condition for the absence of topological order [1]. The
non-tiviality of the winding number Eq. (28) (for a
certain parameters regime) shows that the system is a
chiral topological insulator.
To sumarize, the introduction of NNN neighbour inter-
actions (t̄ 6= 0) breaks particle-hole symmetry (provided
that φ 6= 0) and gives an opposite contribution to the
masses in Eq. (20). On the contrary, the staggered
interactions (δt 6= 0) give an equal contribution to the
fermion masses. As a consequence, the simultaneous
presence of both interactions allow to arbitrarily tune
the masses m±.
Intuitively, this model presents several formal analogies
with the Haldane model [20] where spinless electrons hop
on the verteces of a honeycomb lattice. Such a model has
a kinematic term which preserves time-reversal and in-
version symmetries (and breaks particle-hole symmetry)

that gives rise to two gapless Fermi points. In addition,
next-nearest neighbour interactions (mimicking a nested
magnetic field) and a staggered chemical potential break,
rispectively, time reversal and inversion symmetry. The
breaking of each symmetry allows for a non-zero energy
gap to appear. More precisely, the fermions at the two
Fermi points acquire the same (opposite) mass due to
the breaking of time-reversal (inversion) symmetry. In
this sense, our NNN neighbour and staggering terms
mimic, respectively, the staggered magentic field and
the chemical potential of the Haldane model. In the
light of the classification given in [1], the key-feature
to build a non-trivial topological phase on top of our
(Haldane) kinematic theory is to break the particle-hole
(time-reversal) symmetry. Despite these similarities, the
Haldane model breaks all symmetries (it describes the
physics of the quantum Hall effect without magnetic
field) while we have to pay extra attention to preserve
chiral symmetry in order to protect the topological phase.

III. INTERACTING FERMIONS MODEL

We now turn to the case of interacting fermions. The
starting point is the effective theory described in Eq. (22)
with φ = π/2. This model has enough flexibility to al-
low us to arbitrarily tune the masses around the two
Fermi points shown in Fig. 4. Following the approach
in [21] we can define a hierarchy in the energy scales,
given by |m+c

2| ≪ |m−c
2|, and adiabatically eliminate

the physics around the second Fermi point, P−. We now
introduce four-body fermionic interactions with coupling
U that is small compared to the energy scale of P−, i.e.
√

(~c)3/U ≪ m−c
2, and comparable to |m+c

2|. These
interactions are particularly designed so that they give
rise to self-interacting current-current terms in the sin-
gle Dirac fermion description corresponding to P+. The
resulting effective physics is encoded in the Hamiltonian

H(p) = Ψ†(cα·p+mc2β)Ψ+
g2

2m
(2JµνJ

µν−JµJ
µ), (29)

where m ≡ m+ = (δt − t̄)/c2 and g2 = 2mU . There
are two types of currents given by Jµ = Ψ̄γµΨ and
Jµν = Ψ̄γ5[γ

µ, γν ]Ψ, for Ψ̄ = Ψ†γ0 with the gamma ma-
trices γµ defined as γ = βα, γ0 = β and γ5 = iγ0γ1γ2γ3.
A dimensional analysis shows that the four-components
Dirac field has dimensions [Ψ] = (Length)−3/2 com-
patible with the units of the Hamiltonian density
above. This fixes the dimensions of the current-current
interaction terms (to (Length)−6) which, in fact, implies
that [U ] = Energy · (Length)3 has dimensions of Energy
times Volume. The Hamiltonian in Eq. (29) is the
tensorial generalization of the Thirring model [23] in
3 + 1 dimensions. This generalization of the Thirring
model is not renormalizable (at least by means of
perturbative methods). It is analogous in spirit to the
Nambu-Jona-Lasinio model [32] and the Fermi effective



7

FIG. 4: Adiabatic elimination of a Fermi point. The energy
spectrum (in arbitrary units) of the model described by the
Hamiltonian in Eq. (1) (as a function of the momentum vari-
able pz for fixed px = py = 0) allows to arbitrary tune the
masses around the two Fermi points (see Eq. (20)). In par-
ticular, by opportunely choosing the parameters δt and t̄, it is
possible to work in a regime where m− ≫ m+. If we suppose
not to have any perturbation with energy scale bigger than
|m−|, then the low energy physics of the system is completely
described around the P+ Fermi point in the Brillouin zone.

model [33] for weak interactions which involves the non
renormalizable point-like interaction between two cur-
rents. The Thirring interaction terms which appear in

the Hamiltonian (29) have a coupling parameter U = g2

m
which has dimensions Length×Energy. The energy scale

associated with such parameter is given by Ũ =
√

(~c)3

U

(which is the only energy scale we can define from ~, c
and U). This gives a dimensional analysis justification

to the adiabaticity condition Ũ =
√

(~c)3

U ≪ m−c
2 which

allows us to restrict the physics around one Fermi point.
From now on we will use units where c = ~ = 1.

A. Microscopic prescription

We now want to find the microscopic description for
the Hamiltonian in Eq. (29). To achieve this, we proceed
backwards and substitute in Jµ and Jµν the expressions

for the spinor Ψ =
(

ap dp cp bp
)T

and the gamma
matrices as given by γ0 = β and γi = βαi. After some

tedious calcuations one gets

JµJ
µ = (Ψ̄γµΨ)(Ψ̄γµΨ)

= −2(a†a+ b†b+ c†c+ d†d)
+2(a†a)(d†d) + 4(a†a)(c†c) + 6(c†c)(d†d)
+6(a†a)(b†b) + 4(b†b)(d†d) + 2(c†c)(b†b)
+6a†b†cd+ 6c†d†ab− 2adb†c† − 2bca†d† ,

(30)
and

JµνJ
µν = (Ψ̄γ5[γµ, γν ]Ψ)(Ψ̄γ5[γµ, γν ]Ψ)

= 48
[

(a†a)(b†b) + (c†c)(d†d)
− (a†a)(d†d)− (b†b)(c†c)

]

−48
[

a†b†cd+ b†c†ad+ c†d†ab+ a†d†bc
]

.
(31)

The terms involving only two fermions can be omitted
since they give a contribution to the Hamiltonian kernel
which is proportional to the identity and can be seen as
a constant chemical potential on every site of the lat-
tice. The other terms either interactions between two
sites populations or between four sites.
This shows the explicit form of the microscopic interac-
tion needed to simulate the Tensorial Thirring model at
low energies given by Eq. (29). We note that some of
these interactions are attractive while other are repulsive.

B. Bosonization

Throughout the rest of the section we assume that g 6=
0 in Eq. (29). The Thirring model describes a relativistic
fermion with a potential given by self-interactions. In
order to get a more accessible theory it is possible to
linearize the interaction by introducing new degrees of
freedom. Following this approach, we now show how to
describe the low energy physics of the Tensorial Thirring
model with a pure bosonic theory.
As it can be seen from Eq. (29), the effective theory of
our model is described, in Euclidean space, by the action

ZTTh =

∫

D[Ψ̄]D[Ψ]e−SD−SJ , (32)

where the Dirac action, SD =
∫

d4xΨ̄( 6∂ −m)Ψ, and the

action for the currents, SJ =
∫

d4x g2

2m (2JµνJ
µν −JµJ

µ),
are given in Euclidean space. Clearly, SJ involves prod-
ucts of four spinors. To analytically treat this model we
linearise the action in terms of the currents by introduc-
ing the Hubbard-Stratonovich transformation [34]. In-
deed, we employ the bosonic degrees of freedom F ≡
(aµ, bµν) (in terms of a 4−vector field aµ and an anti-
symmetric tensor’ field bµν) to write

e−SJ =

∫

D[F ]e
∫
d4x 1

2
( 1

2
bµνb

µν−aµa
µ)+ g√

m
(bµνJ

µν−aµJ
µ)

.

(33)
Following [34] we can integrate out the Dirac fermions to
find an effective bosonic theory

ZTTh =

∫

D[a]D[b]e−Seff+
1

2

∫
d4x( 1

2
bµνb

µν−aµa
µ) , (34)
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where the effective action is defined as

Seff[aµ, bµν ] = − log det (/∂ −m+
g√
m

/F) , (35)

where /∂ = γµ∂µ and /F = γµaµ + γ5[γµ, γν ]bµν . Up to
terms of order ∂/m (p/m in momentum space) [34] this
effective action can be written as

Seff[aµ, bµν ] = −8
g2

(4π)2

∫

d4xǫµνλσaµ∂νbλσ , (36)

where ǫµνλσ is the Levi-Civita symbol. The correc-
tion terms are insignificant in the large-wavelength/low-
energy regime we are interested in. By neglecting the
irrelevant constants, the partition function for the final
theory can be written as

Z̃ =

∫

D[F ]e−
∫
d4x 1

2
(aµa

µ− 1

2
bµνb

µν)+ g2

2
ǫµνραaµ∂νbρα .

(37)
We note that the fields a and b have dimension
(Length)−2. We could be tempted to consider the field a
as a sort of electromagnetic field and b as a sort of cur-
vature field. Unfortunately, such an interpretation is not
obvious at this stage. In fact, the theory is not invariant
under the gauge-like transformation [35]

{

aµ → aµ + ∂µχ
bµν → bµν + ∂µξν − ∂νξµ ,

(38)

where χ and ξµ are a scalar and a vector field respectively.
In fact, the kinetic terms aµa

µ and bµνb
µν explicitly

break invariance under these transformations (as, for ex-
ample, the vector potential appears explicitely). Hence,

the partition function Z̃ describes a massive spin-1 the-
ory that does not allow easy interpretations. We would
like to recast this theory in a more suitable form given
in terms of a “vector potential” and a “curvature” field,
which naturally leads to next sections’ topic. This pro-
cess is analogous to the (2+1)-dimensional one where a
duality between a selfdual free massive field theory and a
topologically massive theory [36] has been demonstrated.
As a final note, it is important to stress that it is not pos-
sible to apply the bosonization procedure proposed here
to free Dirac fermions, i.e. without the presence of the
current-current interactions in Eq. (29). This means that
we cannot tune the parameter g2 to zero without encoun-
tering non-analytical points, which justifies the presence
of the factor 1/g2 in Eq. (40). Physically, the naive re-
placement g = 0 into the initial (Eq. (29)) and final
(Eq. (37)) theories would lead to a mapping between
free fermionic degrees of freedom into free bosonic ones,
which is clearly forbidden by the statistics of the fields
involved. The presented “transmutation” of degrees of
freedom holds only for interacting theories (g 6= 0), as for
example happens in superconductivity where the inter-
action between electrons in a metal leads to a physics de-
scribed by bosonic degrees of freedom in terms of Cooper
pairs [37].

C. Duality

In order to recast the theory defined in Eq. (37) in a
more suitable form, one can employ a BFT quantization
procedure [38, 39] to show the equivalence of the massive
spin-1 theory

L = −1

4
bµνb

µν +
1

2
aµa

µ +
g2

2
ǫµνλσb

µν∂λaσ , (39)

to one involving an “electromagnetic” field Aµ and a
so called Kalb-Ramond field Bµν [40]. The two the-
ories can in fact be embedded in the same enlarged
theory from which they descend as different choices
of gauge fixing [41, 42]. The resulting theory, in the
Lorentzian signature, is described by the Cremmer-
Scherk Lagrangian [25]

L = −1

4
FµνF

µν +
1

12
HµνλH

µνλ +
1

4g2
ǫµνλσB

µνFλσ ,

(40)
where Fµν = ∂µAν−∂νAµ and Hµνλ = ∂µBνλ+∂νBλµ+
∂λBµν . The field A is an electromagnetic field (with
dimension (Length)−1) while the field B (with dimen-
sion (Length)−1) is the so called Kalb-Ramond field. As
above, we can define the symmetry transformation

{

Aµ → Aµ + ∂µχ
Bµν → Bµν + ∂µξν − ∂νξµ .

(41)

Contrary to the theory described in Eq. (37), this one is
explicitly invariant under this “gauge” transformation.
Let us now take some time to analyze the terms appear-
ing in the action in Eq. (40). The first two kinematic
terms are geometric (the metric appears explicitly) while
the last one has a topological nature and it is the stan-
dard BF term. This theory is a topological massive gauge
theory in 3 + 1 dimensions [25, 26] and represents the
natural abelian generalization of Chern Simons-Maxwell
theory in 2 + 1 dimensions as the Chern Simons theory
cannot exist in 3+ 1 dimensions. This way of generating
mass for the electromagnetic field (through a topologi-
cal interaction) is an alternative to the Higgs mechanism
and can in fact be connected to superconducting phe-
nomena [43, 44]. The theory is renormalizable [26] and
explicitely gauge invariant in the bulk.

D. Bosonization Rules

The possibility to map the Tensorial Thirring model to
a massive gauge theory does not come as a surprise.
In fact, in the (1 + 1)-dimensional case the massive
Thirring model is equivalent to the sine-Gordon massive
scalar theory [45], while in (2 + 1) dimensions is equiv-
alent to the Maxwell-Chern-Simons theory [24], where,
the Maxwell field acquire a mass through a topological
mechanism. Motivated by the analogies with the low-
dimensional cases we propose the natural generalization
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of the bosonization rules to the three-dimensional case.
These rules connect the degrees of freedom of the equiva-
lent fermionic and bosonic theories (up to multiplicative
factors) in the following way

Dimensions Theory Bosonization Rules

1+1 sine-Gordon Jµ → ǫµν∂νφ
2+1 Maxwell-CS Jµ → ǫµνλ∂νAλ

3+1 Cremmer-Scherk

{

Jµ → ǫµνλγ∂νBλγ

Jµν → ǫµνλγ∂λAγ

Let us take a little more time to emphasize the analogies
with the lower dimensional cases and get some more intu-
itions on the bosonization procedure. We can note that
the Thirring model is always equivalent to some mas-
sive theory. In the (1+1) dimensional case the equiva-
lent theory is a sine-Gordon massive scalar theory. The
equivalence with the Thirring model has been shown by
Coleman [45] (see also [46] for extension of the proof to
the finite temperature case). In (2+1) dimensions the
Thirring model has been proven by Fradkin and Scha-
posnik to be equivalent to a Maxwell-Chern-Simons the-
ory. The proof relies on a dualization procedure first
showed by Deser and Jackiw [36] and the equivalent the-
ory corresponds to a massive gauge theory where the
mass of the photon is given thanks to the interaction
with a topological Chern-Simons term (an alternative to
the Higgs procedure to give mass to a gauge theory).
In 3+1 dimensions the Tensorial Thirring model we are
studying is going to be equivalent to a so called Cremmer-
Scherk model [25] where a Maxwell theory is coupled to
a Kalb-Ramond field [40] thanks to a BF term. This is,
in analogy with the (2+1)-dimensional case, a massive
gauge theory where the mass comes from the topologi-
cal interaction with the Kalb-Ramond field. Note that,
in this case, we need two fields since we are considering
two different types of current-current interactions in the
fermionic model. These two fields are necessary to gen-
erate mass for the gauge theory in a topological fashion
[59]. We also note that similar bozonization rules in d+1
dimensions were proposed in [47].

E. Pure Topological Regime

From now on we work in a regime where the contri-
bution of the topological BF term in (40) is dominant,
i.e. we want to work with energy scales much smaller
than 1/g2. Intuitively, this suggests that the Maxwell
and Kalb-Ramond field have small kinetic energy com-
pared to their (topologically) acquired mass. In such a
regime we are sufficiently close to the ground state and
the important contributions to the effective theory come
from the topological BF term

SBF =
1

4g2

∫

M

d4x ǫµνλσB
µνFλσ, (42)

where M is the spacetime manifold associated with our
theory.

1. Boundary Behaviour

We now consider the behaviour of our lattice model
at its physical boundary. Several approaches are pos-
sible based, for example, on the Symanzik method [48]
or on gauge invariance analysis [14, 49]. Focusing on
the latter at the bosonic level a BF theory defined on a
non-compact space, M, is not manifestly gauge invariant
due to contributions from the boundary, ∂M. Restor-
ing gauge invariance generates a (2 + 1)-dimensional BF
theory on the boundary, while leaving the bulk theory
unchanged [14, 49]. Here, we show that the bosonization
rules give rise to exactly the same theory on the bound-
ary of the (3+1)-dimensional fermionic lattice model (for
more detail we refer to Appendix B). We start by in-
troducing a minimal coupling between the tight-binding
fermions and a pure gauge U(1) field Ãµ = ∂µϕ param-
eterised by ϕ. This coupling extends (42), in the contin-
uum limit, by

Sϕ =

∫

M

d4x Jµ∂µϕ, (43)

but it leaves the physics of the model unchanged. We can
now employ the bosonization rule Jµ → ǫµνλγ∂νBλγ , to-
gether with Stokes’ theorem and an integration by parts
to show that

Sϕ =

∫

∂M

d3x φ ǫµνλ∂
µBλν , (44)

where here (and throughout the rest of the paper for
integrations on the boundary) the indices run through
the coordinates that parameterise ∂M. The field φ can
now be interpreted as a Lagrange multiplier enforcing
the condition dB = 0 on ∂M. This implies that, locally,
Bµν = ∂µην − ∂νηµ, which conveniently implies Sϕ = 0.
This means that the possibility to add Sϕ to our action
is equivalent to the contraint dB = 0 on ∂M. We are
now ready to find the effective action on the boundary.
In fact, we can rewrite the right hand-side of Eq. (42) as

1

4g2

(∫

∂M

d3x ǫµνλB
µνAλ −

∫

M

d4x ǫµνλ∂
µBνλAσ

)

,

(45)
which, by restriction on the boundary, implies the follow-
ing form for the theory on the boundary

S∂M =
1

4g2

∫

∂M

d3x ǫµνλ η
µ∂νAλ, (46)

This is indeed a (2 + 1)-dimensional BF theory. It is
equivalent to a double Chern-Simons theory that de-
scribes time-reversal symmetric physics on the boundary.
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2. Physical Observables

We now want to identify physical observables associ-
ated with the purely topological part, SBF. Gauge in-
variant observables of the (3+ 1)-dimensional BF theory
are given by expectation values of Wilson surface oper-
ators [50, 51], which are a generalization of the (2 + 1)-
dimensional Wilson loop operators. These observables,

WB = 〈e
i

g2

∫
∂Σ

B〉, are defined for any two-dimensional
boundary ∂Σ of a three-dimensional volume Σ, where
B is the Kalb-Ramond field [40]. The corresponding

fermionic observables are given by WΨ = 〈eiq
∫
Σ
d3xΨ†Ψ〉,

where q is a generic charge of the (string-like) excita-
tions associated with the field B. The correspondence
is easily proven by an opportunely manipulation of the
Noether charge Q =

∫

Σ
J0d3x (where J0 = qΨ†Ψ). The

joint use of the the bosonization rule J0 = 1
g2 ǫ

ijk0∂νBij

(where the constant g2 has been introduced for dimen-
sional reasons) and Stokes’ theorem immediately leads to
Q = 1

g2

∫

∂Σ
B. This proves that q

∫

Σ
d3xΨ†Ψ = 1

g2

∫

∂Σ
B

(where any proportionality constant implicit in definition
of the bosonization rules is absorbed inside the charge q)
or, in other words

WB = WΨ. (47)

For more details on this proof we refer to Appendix C 1.
It is a well known fact that WB = 1, identically [12].
Indeed, one can explicitly confirm (see Appendix C 2)
that

1

g2

∫

∂Σ

B = 2πn, n ∈ Z, (48)

for all permissible configurations of B. This implies that
the charge q

∫

Σ
d3xΨ†Ψ inside a volume Σ takes discrete

values. While this condition gives, as expected, trivial
values for the observableWΨ it can be employed to distin-
guish between trivial (product) states and topologically
ordered ones [21]. Indeed, product states correspond to
a fixed value of n for a given Σ, while the highly cor-
related ones can give different values at each measure-
ment. These values of n are experimentally accessible
by measuring fermion populations on the vertices of the
tight-binding model that are inside Σ.

IV. CONCLUSIONS

In summary, we presented a tight-binding model of
spinless fermions that has a variety of behaviours. In
the absence of interactions it generalises the methodol-
ogy employed in the (2 + 1)-dimensional Haldane model
to the (3+1)-dimensional case giving a chiral topological
insulator. In the presence of interactions it gives rise, in
the continuum limit, to the (3 + 1)-dimensional BF the-
ory accompanied by a Maxwell term. Our model can be
tuned to be in the topological (BF) or the non-topological

(Maxwell) regimes, thus being of relevance to both con-
densed matter and high energy physics. The versatile
method we presented for detecting the topological char-
acter of the model can become a powerful diagnostic tool
for experimentally probing the topological properties of
three-dimensional systems.
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APPENDIX A: DISCRETE SYMMETRIES

In this appendix we brefly analyze the definitions of
the three symmetries used to study the model given
in Eq. (1). Following the main text, throughout this
appendix we restrict to translationally invariant spinless
fermionic systems.

1. Time Reversal Transformation

Time reversal transformations are associated with the
inversion of time. From a physical point of view we want
to address whether the system distinguishes a time di-
rection or not. More precisely, given a certain Hamilto-
nian H and a solution Ψ(t) of the Shrödinger equation
HΨ(t) = i∂tΨ(t) we want to know if there also exist a
solution Ψ′(−t) of the equation HΨ′(−t) = i∂−tΨ

′(−t).
Let us define the (antiunitary) time reversal operator T
by its action on Ψ(t) as TΨ(t) = Ψ′(−t).
We define a system to be time reversal symmetric if
such an operator T exists and it satisfies the equation
HTΨ(t) = i∂−tTΨ(t), where Ψ(t) is known to be a
solution of the Shroedinger equation HΨ(t) = i∂tΨ(t).
This condition is equivalent to impose T−1HTΨ(t) =
T−1iT∂−tΨ(t) which is satisfied if

{

T−1iT = −i
T−1HT = H .

(A1)

The first condition tells us that the operator T must be
antiunitary while the second can be viewed as a restric-
tion for the Hamiltonian. Given these two conditions,
a solution Ψ(t) of the Shrödinger equation HΨ(t) =
i∂tΨ(t) implies that T−1HTΨ(t) = T−1iT∂tΨ(t) which
in turn implies HTΨ(t) = i∂−tΨ(t), that is TΨ(t) satis-
fies the Shrödinger equation with reversed time.
The operator T can be written as T = TUK where K
is the complex conjugation operator and TU a generic
unitary operator. From this, it is easy to show that

{

TT † = I

TT = T ,
(A2)

since we have TT † = TUKUTK = UU † = I and
TT = KUT = KU∗ = UK = T .
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In the case of spinless fermions, the operator TU can be

chosen to be the identity, so that T−1f†
~rT = f†

~r for ev-
ery generic fermion operator f~r labeled by its position ~r.
The action on the Fourier transformed fermion operator
ap is easily found to be T−1apT =

∑

~r T
−1eip·~rTa~r =

∑

~r e
−ip·~ra~r = a−p. Basically, the time reversal opera-

tor maps a particle with momentum p to a particle with
momentum −p. The time reversal action on the Hamil-
tonian kernel H̄(p) in momentum space follows from

T−1HT =
∑

p f†
−pH̄

∗(p)f−p, where
∗ denotes the com-

plex conjugation which is introduced accordingly to the
first of Eqs. (A1). We then just saw that time reversal
induces an action T̄ on the Hamiltonian kernel given by
T̄ H̄(p)T̄ † = H̄∗(−p) (with T̄ unitary such that T̄ = T̄ †).
Invariance under time reversal is then equivalent of the
request

H̄∗(−p) = H̄(p) . (A3)

Note that the time invariance operator for spinless par-
ticles is just complex conjugation so that T 2 = I.

2. Charge Conjugation Transformation

The charge conjugation transformation does not
involve any action on spatial or temporal coordi-
nates. Let us define the charge conjugation operator
in momentum space following the analysis in [52] .
We impose that, under the action of the (unitary)
charge conjugation operator C the operator that
annihilates a particle f transforms in the operator
that annihilates an antiparticle f ′ as C−1fpC = f ′

p.
Incidentally, from this definition and from the linearity
of the operator we can derive the action in real space:
C−1f~rC = C−1

∑

p eip·~rfpC =
∑

~r e
ip·~rf ′

p = f ′
~r. In our

case we identify the antiparticle with a hole imposing

that f ′
p = f†

−p, to finally get: C−1fT
p C = f†

−p, where
the transpose operator has been introduced to match
the notation used so far where creation (annihilation)
operators are accommodated in a row (column) vector.
The action on the Hamiltonian kernel is
given by :C−1HC: = :C−1

∑

p f†
pH̄(p)fpC:

=
∑

p:f
T
−pC

−1H̄(p)Cf†T
−p:=−

∑

p f†
−pH̄(p)T f−p, where

: : indicates the normal ordering operator (which
imposes creation operators to be on the left of an-
nihilation ones) and where the minus sign takes into
account the fermionic statistics. Charge conjugation
then implies an action C̄ on the Hamiltonian kernel
given by C̄H̄(p)C̄† = H̄(−p)∗ (with C̄ unitary and such
that C̄ = C̄†).
A system is defined to be invariant under charge
conjugation if : C−1HC :=: H : which implies

H̄(−p)∗ = −H̄(p) , (A4)

as one can see by comparing the expression given above
for : C−1HC : and the expression for the Hamiltonian

in momentum space (and taking into account that the
Hamiltonian is hermitian). This is in accordance with
the intuition that, if we want to treat particles and holes
in a symmetric fashion the Hamiltonian has to change
sign when transforming all the particles into holes and
viceversa.
We also note that the charge conjugation operator for
spinless particles is just complex conjugation so that
C2 = I. This condition, together with the unitarity one
implies

{

CC† = I

C† = C ,
(A5)

It is worth noticing that the nomenclature for the charge
conjugation symmetry (and its relation with particle-hole
symmetry) is not uniform in the literature, as pointed out
in, for example, [53].

3. Chiral Symmetry

We define a system to have chiral symmetry if there
exist a unitary matrix C̄s that anticommutes with the
Hamiltonian kernel in momentum space [1, 31]

C̄sH̄(p) = −H̄(p)C̄s , (A6)

and such that C̄2
s = I. This immediately implies

that, for each eigenfunction Ψp with energy Ep there
exist an eigenfunction C̄sΨp with energy −Ep, since
H̄(p)C̄sΨp = −C̄sH̄(p)Ψp = −EpC̄sΨp. In the context
of this thesis, chiral symmetry reflects a particular struc-
ture of the lattice. In fact, a sufficient condition for the
existence of chiral symmetry is the possibility to colour
the lattice such that two vertices of the same colour do
not have a common link. This property is known as bi-
colourability. In this case it is clear that the Hamilto-
nian kernel can be written in a block off-diagonal form
(

0 ·
· 0

)

which implies the anticommutation with σz.

Another sufficient condition for the presence of chiral
symmetry is the existence of both time reversal and
charge conjugation symmetries. In this case we can de-
fine an (antiunitary) operator Cs = TC whose action on
the Hamiltonian kernel is given by (see sections above)
H̄ → C̄sH̄C̄†

s , where C̄s = T̄ · C̄. The existence of both
time and charge conjugation symmetries implies that the
operator C̄s anticommutes with the Hamiltonian since
T̄ · C̄H̄(p) = −T̄ H̄∗(−p)C̄ = −Ĥ(p)T̄ · C̄. One can
take this as a definition of the symmetry (which, since it
combines time reversal and charge conjugation, it can be
named particle-hole symmetry as it maps a particle with
momentum p to a hole with momentum −p).
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APPENDIX B: BEHAVIOUR ON THE

BOUNDARY

In this appendix we study in detail how to obtain the
effective theory describing the boundary of our material.
Throughout this appendix we will use the differential
forms formalism [54]. In this language, the bosonic fields
introduced in section III B consist of a 1−form A and a
2−form B.
Given their importance for what follows we re-write here
the bosonization rules connecting the fermionic micro-
scopic degrees of freedom and the bosonic effective ones

{

Jµ → 1
g2 ǫ

µ
νλγ∂

νBλγ → 1
g2

∗dB

Jµν → 1
g2 ǫ

µν
λγ∂

λAγ → 1
g2

∗dA ,
(B1)

where ∗ denotes the Hodge operator [54] and where we
retain the correct dimensions through the coupling g2.
We now introduce an example of a procedure to obtain
the theory on the boundary as proposed in [14, 49]. This
approach relies on restoring the gauge invariance for the
theory on the boundary. We then propose a procedure
specific to the model presented here. The advantage of
this procedure is that it does not require any physical
hypothesis on the system.

1. Example: how to restore gauge invariance on

the boundary

We start from the BF theory defined in Eq. (42)

SBF =
1

4g2

∫

M

B ∧ F, (B2)

Let us begin by showing that the theory is not gauge
invariance on the boundary. The gauge transformation
considered here is the one in Eq. (41) that is

{

A → A+ dχ
B → B + dξ ,

(B3)

where χ is a function and ξ is a 1-form. It is easy to see
that, when we add a boundary ∂M to the manifold M ,
the theory keeps the invariance under the gauge trans-
formations in Eq. (41) of A alone as only the gauge
invariant quantity F (because of the properties of the
exterior derivative [54] which imply that d2χ = 0) ap-
pears in the action. Unforunately, it loses the invariance
under the generalised gauge transformations for the B
term (see Eq. (41)). In fact under such a transformation
the action changes as

S → S +∆S , (B4)

where

∆S =

∫

M

dξ ∧ F =

∫

∂M

ξ ∧ F , (B5)

where in the last step we used integration by parts, Stokes
theorem and the abelian Bianchi identity dF = d2A = 0.
We now want to modify the orginal action to restore
gauge invariance on ∂M .
Following [49] and [14] (see also [44]) we now add a
boundary term

∫

∂M
B ∧ A to the action so that S′ =

S+
∫

∂M
B∧A. This solves the gauge invariance problem

for the field B as easily shown with the following

∆S′ = ∆S +
∫

∂M
dξ ∧A

=
∫

∂M
ξ ∧ F −

∫

∂M
ξ ∧ F +

∫

∂M
d(ξ ∧A)

= 0 ,
(B6)

where in the last equality we used the Stokes theorem
together with the fact that ∂∂M = 0. Note that we now
have broken the gauge invariance under the transforma-
tion on A as can be easily seen by simple inspection of
the additional term

∫

∂M
B ∧ A which is explicitely de-

pendent on the (gauge) field A. In order to restore full
gauge invariance, we introduce a new scalar field φ with
the following transformation properties

φ → φ− χ , (B7)

where χ is the same function appearing in the transfor-
mation rule for A. We now notice that if we redefine
A → A′ = A+ dφ = Dφ we get ∆A′ = dχ− dχ = 0. We
then can define a final gauge invariant action as

Stot =

∫

M

B ∧ F ′ +

∫

∂M

B ∧A′ . (B8)

Explicitely, the total action is

Stot =
∫

M
B ∧ F ′ +

∫

∂M
B ∧A′

=
∫

M
B ∧ dA′ +

∫

∂M
B ∧A′

=
∫

M
B ∧ (dA+ d2φ) +

∫

∂M
B ∧ (A+ dφ) .

(B9)
Notice that we have modified the action only on the
boundary and that the additional term breaks time re-
versal symmetry (B is even for time reversal since it is a
sort of electric field, while A is odd) and it is in fact odd
under such symmetry if we impose that φ → −φ under
time reversal.
What is the role of the new field φ in our theory? This
field is actually not a dynamical one. We can see this by
using its equation of motion. Let us start by computing
δφStot. We have

δφStot =
∫

∂M
B ∧ δdφ

=
∫

∂∂M
d(B ∧ δφ)−

∫

dB ∧ δφ
= −

∫

dB ∧ δφ
(B10)

The equation of motion for the field φ is given by δφStot =
0 which (from Eq. (B10)) is fulfilled if dB = 0 on the
boundary ∂M . In fact, the field φ is nothing but a La-
grange multiplier enforcing the constraint

dB = 0 on ∂M . (B11)
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We can now suppose that the boundary for our system
is ∂M = R× Σ where the spatial manifold Σ is topolog-
ically equivalent to S2. Otherwise stated, our boundary
is a sphere embedded in the space. The constraint in
Eq. (B11) is telling us that B is a closed 2 form on this
boundary. Since the second de Rham cohomology class
on ∂M is non-trivial we can say that B = dη only locally
on ∂M (i.e. B is a pure gauge there) so that the total
action is

Stot =

∫

M

B ∧ F +

∫

∂M

dη ∧A′ , (B12)

where the boundary term is local on the boundary. We
can then conclude that we have (locally) a BF theory on
the boundary ∂M . The kinetic terms F ∧∗F and H∧∗H
on the boundary are not topological and they are of no
interest in this matter (see also [44]).
Incidentally, we notice that this method of imposing
gauge invariance on the boundary is not the only possible
one. In fact one can as well change the transformation
rules of the B field imposing that it has to transform
trivially B 7→ B on the boundary (that is: B is a true
“curvature” form on the boundary). In this case we can
avoid adding the term

∫

B ∧A.

2. BF theory on the boundary

In the previous example, the existence of a BF the-
ory on the boundary was proved by invoking additional
terms on the boundary (wihch also involve a new scalar
field), justified by the requirement of gauge invariance.
In this section we want to closely follow this procedure.
Specifically, we want to add a scalar field in order to im-
pose dB = 0 on the boundary ∂M . The main question
we want to address is: can we justify the addition of such
a field? We will find a positive answer as a consequence
of the bosonization rules given in Eq. (B1).
Let us begin by introducing a pure gauge electromagnetic
field Aφ = dφ in the fermionic tight binding model (we
stress that we do not actually require the field Aφ in the
system but we introduce it as a pure gauge only to prove
that dB = 0 on ∂M). The interaction can be imposed
through minimal coupling of the fermionic current to the
field Aφ. This implies the addition of a term JµA

µ
φ to the

microscopic action. Such a term, manipulated through
the bosonization rules (thanks to Stokes theorem) gives

∫

M
JµA

µ
φ =

∫

M
∗J ∧Aφ

=
∫

M
dB ∧ dφ

=
∫

M
d(B ∧ dφ)

=
∫

∂M
B ∧ dφ .

(B13)

This shows the expression for the additional term to be
added to the effective theory as a consequence of the min-
imal coupling. We can notice that this additional term
contains a scalar field φ. Compared to the example given
in the previous section the introduction of this term is

now naturally arising from the minimal coupling of the
microscopic theory with a pure gauge degree of freedom.
The possibility of this result is given by the bosonization
rules present in our analysis. This pure gauge is totally
arbitrary and does not change the physics of the model.
We can then treat this field as being a Lagrange multi-
plier enforcing the condition dB = 0 on the boundary as
explained in the example above. We then have B = dη
on ∂M and we can write the total action for our theory
as

Stot =

∫

M

B ∧ F +

∫

∂M

dη ∧ dφ . (B14)

We can now notice that the second term in this expression
(the one coming from the minimal coupling) is actually
zero since

∫

∂M
dη∧dφ =

∫

∂M
d(η∧dφ) =

∫

∂∂M
η∧dφ = 0

(where we used Stokes theorem and the fact that ∂∂M =
0). Basically, the gauge field φ “lives” just enough to im-
pose the constraint dB = 0 on ∂M before dying without
leaving any trace! The action is then given by

Stot =
∫

M
B ∧ F

=
∫

M
B ∧ dA

=
∫

M
d(B ∧A)−

∫

M
dB ∧A

=
∫

∂M
B ∧A−

∫

M
dB ∧A .

(B15)

Since dB = 0 on the boundary we have that on ∂M the
value of the action is just

S∂M =

∫

∂M

B ∧A , (B16)

and, locally

S∂M =

∫

∂M

dη ∧A . (B17)

This is indeed a (2 + 1)-dimensional BF theory and
proves Eq. (46) in the main text. It is equivalent to a
double Chern-Simons theory that describes time-reversal
symmetric physics on the boundary.
In summary, we have seen that our model is equivalent
to one which has a theory on the boundary with a
topological BF term. Notice that, without the term
∫

B ∧ A (described in section B 1) the introduction of
the scalar field done in this section is not enough to
restore the gauge invariance on the boundary. More
precisely, the theory in Eq. (B17) is invariant for gauge
transformations involving the field A alone but not for
ones involving also the field B.

APPENDIX C: OBSERVABLES

It is possible [50, 55] to define observables which witness
the topological nature of the BF theory describing the
low energy physics of the model. These observables are
defined as expectation values of Wilson surface operators

〈ei
q

g2

∫
∂Σ

B〉 , (C1)
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where the surface ∂Σ is defined as the boundary of a
generic three-dimensional spatial manifold Σ and where
q is a generic charge of the string-like (since the two-form
field Bµν couples with tensorial currents Jµν and not to
the usual vector currents Jµ as the electromagnetic field
Aµ) excitations associated with the field B. In [55] it is
shown that such an expectation value is trivial and equal
to 1, for the (3+1)-dimensional case considered here. In
fact, it represents the trivial case in which the surface
∂Σ doe not intersect any other surface leading to a null
linking number. Explicitly we have

〈ei
q

g2

∫
∂M

B〉 = 1 . (C2)

In this appendix we will check this result for our specific
model and we will describe how to map this observable
to a microscopic fermionic observable.

1. Effective Noether charge as a topological

number

We begin by noticing that the Wilson surface observ-
able can be written as an effective Noether charge. The
effective Noether charge can be written as a function of
the zeroth component of the Noether fermionic current
as

Q =

∫

Σ

J0d3x . (C3)

The general expression for the current is obtained by the
bosonization rule as

J = 1
g2

∗dB

= 1
g2 ∂λBµν

∗[dxλ ∧ dxµ ∧ dxν ]

= 1
g2 ∂λBµνǫ

λµν
ρdx

ρ ,

(C4)

where we used
{

B = Bµνdx
µ ∧ dxν

dB = ∂λBµνdx
λdxµ ∧ dxν .

(C5)

Eq. (C4) directly leads to the expression for the zeroth
component of the Noether current

J0 = 1
g2 ∂λBµνǫ

λµν
0

= 1
g2 ∂

iBjkǫijk0 .
(C6)

Any proportionality constant left implicit in the
bosonization rules can simply be used to rescale the pa-
rameter g2. We now note that this is the same expression
in coordinates as the exterior differential in the space di-
mensions of the form ϕ∗

t (Bµνdx
µdxν) where ϕ∗

t denotes
the pull back [54] of the form B in a constant time slice
of spacetime under the map ϕ : R

3 → R
4 given by

{~x} 7→ {~x, t}. We in fact simply have

d(ϕ∗
t (Bµνdx

µdxν)) = d(Bijdx
idxj)

= ∂kBijdx
idxjdxk

= ∂kBijǫ
kijdx1dx2dx3

= g2J0d
3x .

(C7)

We can finally write the expression for the effective
Noether charge as

Q =
∫

Σ
J0d3x

= 1
g2

∫

Σ
∗dB

= 1
g2

∫

Σ
d(ϕ∗

t (Bµνdx
µdxν)) .

(C8)

Since J0 = qΨ†Ψ for a given charge q, we can now use
these results to identify observables for the effective topo-
logical theory with fermionic physical observables as

e
i

g2

∫
∂Σ

B
= eiq

∫
Σ
Ψ†Ψ . (C9)

2. Check of quantization of the effective Noether

charge

In this subsection we further analyze the left hand side
of Eq. (C9) in order to check the validity of Eq. (C2).
For simplicity, we start by rescaling the field 1

g2B →
B. We can consider the embedding ϕΣ : ∂Σ → R

3 of
the two dimensional manifold ∂Σ in R

3 and include it in
the definition of Q. In fact, such an embedding induces
a pull-back map ϕ∗

Σ [54] which takes differential forms
defined in R

3 to differential forms defined in ∂Σ. We get

Q =
∫

∂Σ
Bjk ϕ∗

Σ[dx
j ∧ dxk] . (C10)

If we introduce coordinates θ1, θ2 on ∂Σ and write the
pull-back function in coordinates [54], we find

Q =
∫

∂Σ
Bij

∂ϕi
Σ

∂θa

∂ϕj
Σ

∂θb dθ
a ∧ dθb

=
∫

∂Σ
B̃abdθ

a ∧ dθb ,
(C11)

with i, j = 1, 2, 3 and a, b = 1, 2 and where, for simplicity,
we defined B̃ as a 2-form living on ∂Σ (notice that the

above integral can be written as a flux
∫

~B · d~S with

~Bi = ǫijkBjk, d~s
i = ǫijk

∂ϕi
Σ

∂θa

∂ϕj
Σ

∂θb dθ
a ∧ dθb). Tracking

down the definition of B̃ we find that B̃ is obtained by
after applying two pullback on B: B̃ = ϕ∗

Σϕ
∗
tB.

Eq. (C11) tells us that we have to compute the surface
integral of a two form. In a two-dimensional space every
spatial two-form is always closed, that is dspaceB̃ = 0. In
our case we are interested in ∂Σ = S2 so that the second
the de Rham cohomology group is not trivial allowing us
to conclude that B is exact only locally on the sphere.
We can define two patches of the sphere called N and S
respectively around the north and south pole. We can
suppose that the two patches intersect on a closed loop
γ (let us say the equator). We can define B̃ = dAN and

B̃ = dAS on the two patches (let us say: North (N) and
South (S)) and write

Q =
∫

N
dAN +

∫

S
dAS

=
∫

N
(∂1A

N
2 + ∂2A

N
1 )dθ1dθ2

+
∫

S
(∂1A

S
2 + ∂2A

S
1 )dθ

1dθ2 .
(C12)
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We can now use Stokes theorem and write

Q =

∫

γ

AN −AS , (C13)

where, as defined above, γ is the common line where the
surfaces N and S intersect. The origin of the minus sign
lies in the fact that ∂Σ has no boundary so that γ has to
be taken with different orientations depending if we are
integrating on N or S.
How are the two “potentials” AN and AS related on γ?
We know that, in general, our theory is invariant under
the symmetry B 7→ B + dξ where ξ is a 2-form, which
in coordinates reads: Bµν 7→ Bµν + ∂µξν + ∂νξµ. We

now remember, from the analysis given above, that B̃ =
ϕ∗
Σϕ

∗
tB. Since the exterior derivative d commutes with

the pullback [54] we have that B̃ 7→ B + dξ̃, where ξ̃ =
ϕ∗
Σϕ

∗
t ξ. This transformation has been studied before [56]

but its connection with a gauge group is not clear and
we will in fact do not suppose any association with a
gauge group. Since B = dA the transformation has to
act on the potentials A as A 7→ A+ ξ, or in coordinates
Aµ 7→ Aµ + ξµ. We also want the field B to be single
valued on γ. This can be imposed by writing the simple
looking relation: BN = BS (on γ) which leads to

dAN = dAS = dAN + dξ , (C14)

so that dξ = 0 on γ. This means that ξ is closed and
locally exact (ξ = dχ) on γ and also allows to write

AN −AS = dχ , (C15)

where χ is a function defined on γ everywhere except for
a point. Since we can take a point out of the integral
over γ without affecting the value of the integral we can
write, from Eq. (C13)

Q =
∮

γ
dχ

=
∮

(~∇χ) · d~γ .
(C16)

Unfortunately what was done so far did not give us any
contraints on the value of the discontinuity in χ around
γ. This is a reflection of the fact that we decided (in all
generality) not to associate a gauge group to the trans-
formation properties of the field B. Nevertheless, we can
still obtain such constraint by invoking the observable na-
ture of the Wilson surface operators 〈ei

∫
∂Σ

B〉. As such,
we do not want these observables to be dependent on
some ”gauge” choice. In particular, we can always use
the arguments given above to show that every transfor-

mation of the fields implies: 〈ei
∫
∂Σ

B〉 7→ 〈ei
∫
∂Σ

B〉ei
∮
γ
dχ.

Since we do not want the value of the observable to be
affected by a (generalised) gauge transformation, we have
to impose the condition

∫

γ
dχ = 2πn (see also [57, 58])

which leads to the final result

Q = 2πn . (C17)
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