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Abstract
We study theHaldanemodel with nearest–neighbor interactions. Thismodel is physicallymotivated
by the associated implementationwith ultracold atoms.We show that the topological phase of the
interactingmodel can be characterized by a physically observable winding number. The robustness of
this number extendswell beyond the topological insulator phase towards attractive and repulsive
interactions that are comparable to the kinetic energy scale of themodel.We identify and characterize
the relevant phases of themodel as a function of the interaction strength.

1. Introduction

The integer quantumHall effect initially [1] and themore extended set of topological insulatorsmore recently
[2], represent a family ofmany-body systemswith exotic transport properties. These properties originate from
the symmetries of the system and a robust and hidden topology that appears in its bands [3].More precisely, if
such two-dimensional non-interactingmodels are embedded in a torus and diagonalized inmomentum space,
they give rise to a collection of bands, kn ( )e , and eigenstates, kn ( )y for integer n, which are characterized by the
Chern numbers
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When the Fermi energy of the system lays in the gap between two bands and the total Chern number of the
occupied bands is non-zero, then its quantumphase corresponds to a topological insulator. Its key physical
property is that as an insulator it is non-conducting in the bulk, but it has robust conducting states that live on
the boundary of the lattice due to the non-trivial band topology. These edge states are well known for their
robustness under perturbations: the non-local nature of the topological phase that supports them, allows edge
states to survive under extreme conditions of distortion, impurities and other external perturbations. This
resilience of topological edge states is highly favorable when considering their realization and detection in the
laboratory.

An important open question in topological insulators is what happens to their topological properties in the
presence of interactions. One special situation is whenwe force the energy bands of the insulator to be extremely
narrow, having kn ( )e almost independent of k , and introduce a strong repulsion or attraction. A paradigmatic
case is the fractional quantumHall effect [4], where states with fractionalfilling support anyonic excitations that
could be used for quantum computing [5, 6].

A complementary situation is when there are obvious dominant energy scales and the interaction term is
comparable to the kinetic term that originates the topological phase. This regime, which has been addressed in
earlier theoretical works [7, 8], is relevant towhat could be experimentally achieved in present quantum
simulations of topological insulator with ultracold atoms. Such simulations have been recently realized in the
laboratory for theHarper–HofstadterHamiltonian [9–11] and theHaldanemodel [12].

In this workwe employ theHaldanemodel to study the role of interactions in the survival or destruction of
the topological phases. Thismodel [13] is a particular instance of a topological insulator or anomalous quantum
Hall effect. It is realized on a honeycomb latticewith complex hopping amplitudes, as shown infigure 1.We rely
on a variant of themodel introduced in [14], which is amenable to being implemented using ultracold atoms in
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optical lattices. It was also shown in [15] that it can introduce new regimes, such as a topological semimetal. Its
physical implementation naturally gives rise to nearest–neighbor interactions [16]. This is exactly the settingwe
simulate here.

Our study relies on an established tool for characterizing non-interacting topological phases, the so called
winding number. This is amathematical object

S k S k S k k
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which can be constructedwhen the unit cell of the lattice contains a pseudospin degree of freedom (see section 2)
and the eigenstates of themodel are represented by unique Bloch vectors

S k k ktr , 30 0( ) ≔ ( ∣ ( ) ( )∣) ( )s s y yá ñ = ñá

where 0y is the ground state of amomentum-dependentHamiltonian Hk
2 2Î ´ . For the non-interacting case

thewinding number is identical to theChern number [17]. It has been shown that ν is an observable that can be
directlymeasured in ultracold atoms experiments [14]. This approach has been generalized to topological
superconductors [18] and to composite problems (i.e. unit cell dimensionality 2n), where it still signals the
existence of topological phase [17]. In this respect, we regard thewinding number as a global order parameter in
its own right that can bemeasured experimentally.

Themain result of this work is that the topological phase that originates in the non-interacting topological
insulator regime extends towards both attractive and repulsive interactions, and is at all times detectable through
the winding number (2). For very repulsive interactions a charge density wave (CDW) order develops, as already
indicated by exact diagonalizations infinite lattices with afixed number of particles per site [7, 8]. For very
attractive interactions the latticefills up, as wework at zero chemical potential regime. This phenomenology can
be observedwith a very straightforwardmean-field theory that workswith the vector field (3) as an order
parameter. This theory shows both the survival of thewinding number aswell as the phase transitions into the
topological phase and into theCDW.Thesemean-field predictions are confirmed bymatrix-product-states
(MPSs) ansatz which is optimized usingDMRG for ground state computations with up to 50 lattice sites, a size
that doubles what is currently achieved through exact diagonalizations. Finally, the destruction of the

Figure 1. (a)Honeycomb latticemodel depicting the nearest neighbor, t, next-nearest–neighbor hoppings, ta b, , and the interactionU.
(b)Lattice unit cell and indices of sites. The laser for the light-assisted tunneling has a linearly growing phase along the direction of the
momentum p, which gives rise to complex hoppings.

Figure 2.Matrix product state structure running through the 2Dhoneycomb lattice. Dashed lines represent the underlying
honeycomb lattice, while solid lines represent theMPS bond dimensions.
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topological insulator that takes place for large attractive interactions ismodeled using an extension of themean-
field theory by Poletti et al [19], which shows the appearance of a superconducting phase in such regimes.

The structure of this paper is as follows. In section 2we introduce the formof theHaldanemodel used here.
Section 3 introduces amean-field theory that workswith the spin field (3) as order parameter and thus gives at all
times a proper value of thewinding number. Section 4 introducesMPSs, the variational ansatz that we use to get
numerical estimates of the ground state properties infinite-size problems. Since both ourmeanfield and our
DMRG fail for very attractive interactions, section 5 introduces a BCS ansatz thatwe can use to describe that
regime, generalizing the ideas in [19]. Section 6 introduces themain results, describing the phase transitions that
take place in thismodel and how they are characterized through thewinding number, themean field and
DMRG, or the BCS theory. Finally, section 7 discusses further implications of this work and possible outlooks.

2. Themodel

Weworkwith a variant of theHaldanemodel that introduces flux as a phase on the nearest neighbor hopping of
a honeycomb lattice, as explained in [14]. Themodel is extended to consider also nearest–neighbor interactions
that take place between the different sublattices of theHaldanemodel. Overall, we canwrite theHamiltonian in
the form H H HU0= + , with theHaldanemodel describing the hopping of particles in the honeycomb lattice.
Introducing pairs of indices, i js ,( )= , running over the lattice, as shown infigure 1, we canwrite

H t b a a a b b

t a a t b b

h.c.

4a b

v v v v s
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s s s s
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and a nearest–neighbor interaction

H Un n . 5U a b
v v v v s

s s v
, ,

, ,

0 1 2

( )
{ }
å å=

Î
+

Here, v 0, 0 , 1, 0 , 0, 1 , 1, 1i {( ) ( ) ( ) ( )}Î - represent displacements between lattice cells; t t exp iv v( )f= is a
nearest–neighbor hopping termwhere a complex phase vf is induced in the spirit of [14]; the intralattice
hopping parameter in the A B, sublattice is ta b, , and the nearest–neighbor interaction strength isU. Finally, we
include a possible lattice imbalance, ò, that will bemade zero in this work.

The hopping part of theHamiltonian, t and ta b, , implements aDirac-typeHamiltonianwith two distinct
singularities in the Brillouin zone (BZ). The t term gives rise to the kinetic terms of the effectivemodel, while the
ta, tb terms implement amomentumdependentmass. The combination of both terms can be rewritten as a
pseudospinmodel

H k k S k k kd , 60
BZ

2 ( ) ( ) · [ ( ) ( )] ( )†ò se= - Y Y

where k( )e are the energies of the two bands at the given quasimomentum k . At half filling, that is one atom
per unit cell, the ground state is obtained by placing one particle in the lowest band, which is a single particle state
with an orientation of the pseudospin a bk ,k k( ) ( )† † †Y = dictated by S.

Aswidely explained in [14], thismodel could be implemented using two separate optical lattices that store
atoms in twodifferent internal states, one for sublattice A and a different state for sublattice B. The nearest
neighbor hopping between sublattices would then be implemented by laser assisted tunneling between internal
states. As a consequence, if the photon-assisted tunneling is implemented by a Raman process, the tunneling
amplitude txywill carry a phase that is proportional to the phases of the laser in the two lattice centers, x and y. If
we use a single laser propagating along the direction andmomentum p, we have t p x yexp ixy [ · ( )]µ + . In our
setupwe have chosen onefixed directionwhich is perpendicular to one of the lattice edges, as sketched in
figure 1(b). The complex hoppingsmay then bewritten

t t te , 7v v v
i

0 2 1
( )*= =F

with p v v2 0( )F = - . Note also that by using two overlapping sublattices we also allow for the presence of strong
nearest–neighbor interaction between sublattices, which is proportional to the square of the overlap between
latticewavepackets (see [16]) and can be rather large.

More recently the group of Prof Esslinger has demonstrated an alternative implementation of theHaldane
model using periodically shaken optical superlattices. There, a square lattice isfirst distorted into a brick lattice
by the introduction of an additional laser, creating amodel that behaves like graphene. This lattice is then
periodically shaken so that certain hopping amplitudes are enhanced and others are reduced, implementing the
Haldanemodel [12]. A clever combination of the shaking directions and phases allows prettymuch the same
flexibility as our proposal above. The only drawback is that nearest neighbor interactions are weaker in the
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shaken lattice than in the overlapping lattice setup thatwe introduced. This impedes further enhancements or a
significant reduction of the hopping rates. Hence, the translation of our results to that particular experiment is
only useful in theweakly interacting regime, U t∣ ∣  .

3.Meanfield theory

3.1. Generalmethodology
Our approach towards amean-field study of the interactingHaldanemodel builds on our knowledge of the non-
interacting solution: in the non-interacting case the ground state wavefunction is exactly parameterized by the
pseudospin orientation S k( ) of the fermion that populates the k quasimomentum in the BZ. Consequently, we
maywrite the ground state wavefunction at half filling as

S kGS . 8k∣ ∣ ( ) ( )ñ = Ä ñ

In the interacting case we expect the nearest–neighbor repulsion to have amoderate effect on the fermion
distribution,more or less preserving the Fermi sea and the topological phase associated to the vector field S. In
otherwords, wewill estimate variationally the ground state properties of the interactingmodel using the
wavefunction (8) and the orientations of the pseudospins as variational parameters.

Thismean-field approach is rather unique. The variational ansatz for GS∣ ñ is a product state over theHilbert
spaces of each quasimomentummode, described by a quasicontinuous field S k( ) that is defined onN
equispaced points of the BZ. Thus, even though ourHilbert space contains 2N parameters, our semiclassical
description only employs N2 values associated to the orientations of the S on theN points inmomentum space.
Because the complexity of this description is linear in the problem size, we can afford to treat rather large lattices
with it, exceeding those of theMPS simulations by an order ofmagnitude. Nevertheless, the outcome is
numerically the same for these larger lattices, as wewill showbelow, and the optimization becomes slower.

It is important to remark that thismethod becomes exact in theU=0 limit.Moreover, themean-field
variational wavefunction (8) continuously interpolates between the topological phase and other phases that are
to be found, such as theCDW that we expect in the limitU→+¥, where atoms localize in either of the
sublattices. This variational ansatz, however, does not capture other orders, such as a superconducting phase
that should arise for large negativeU t2∣ ∣~ - . To analyze this phase we employ below a different ansatz.

3.2. Spinmodel
We rewrite theHaldanemodel inmomentum space, including the interaction. For thatwe introduce the Fourier
transformed operators

a
N

a
1

e , 9k
s

k s
s1 2

i ( )·å= -

and similarly for the b operators. Here k is a set ofN discretemomentumoperators that span the first BZ, and s
is the lattice position.

The interaction term iswritten in position space as

H U b b a a , 10U
v s

s v s v s s

m

m m ( )† †åå= + +

with three displacements v0,1,2 that connect one site to its neighboring cells. The Fourier transformof this
Hamiltonian becomes

H
U

N
b b a a fk k k k k k , 11

k
k k k k 1 2 3 4 1 2

1,2,3,4

1 2 3 4 ( ) ( ) ( )† †å d= - + - -

since the central exponential, which has been summed over s, has led to a (·)d that enforces the conservation of
momentum. Finally, we have theweight function

f q e . 12
v

q vi

m

m( ) ( )·å=

At this point we notice thatHU can be decomposed into terms that connect twomomenta and terms that
connect four differentmomenta. Sincewe are going to use a variational wavefunction of the form (8), the latter
terms do not contribute. OurHamiltonian thus reads

H
U

N
b b a a f b b a a fk S k p q0 . 13

p qk
p p q q p q q p( ) ( ) · [ ( ) ( )] ( )† † † †å åse= - + + -
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Within our variational subspace of one particle permomentumorbital, we have the relations

b b a a b a
1

2
1 ,

1

2
1 , . 14z z

q q q q q q q q q( ) ( ) ( )† † †s s s= + = - = +

Using f 0 3( ) = , wemaywrite, up to additive constants
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The second term induces CDWorder, forcing all atoms to be on one sublattice or the other. The third term
scatters particles to differentmomenta. Both terms counteract the effect of themagnetic field p S p( ) ( )e that tries
to enforce the topological phase.

4.MPSs ground state

4.1. Generalmethodology
To confirm themean-field predictions one could perform exact diagonalization for computing the ground state
wavefunction and evaluating thewinding number.However, this becomes unfeasible for two combined reasons.

Thefirst one is that we need aminimum size of the lattice to detect thewinding number. If we perform a
simulationwith L L1 2´ unit cells in position space, using periodic boundary conditions, it would amount to
sampling L L1 2´ points in the BZ. A quick numerical calculation revealed that this sampling is insufficient to
capture thewinding number accurately if L 3 . Thismeans that the smallest simulation that could conceivable
reproduce the non-interacting result would be a 4×4 cells lattice with 32 sites.

The second reason is that given that baseline, performing simulations at half-filling becomes unfeasible
using an ordinary computer and algorithms. Already storing the ground-state wavefunction for the 4×4 lattice
demands several gigabytes andwewere not able to do ground state computationswithout resorting to state-of-
the-art diagonalization software and a supercomputer with parallelized Lanczos. Note indeed that already the
largest clusters that are found in the literature [8] at halffilling have sizes around 24 sites or 3×4 cells, which are
insufficient for thewinding number computation.

A powerful alternative to exact diagonalizations are tensor-network statemethods. In particular, we have
usedMPSs to represent the ground state and a two-siteDMRG-type algorithm [20, 21] to compute the
minimumenergy state within that variational ansatz.While theMPS is a variational formof amany-body
wavefunction that is built by contracting tensors (matrices) in a 1D scheme, it has been used also for efficiently
approximating 2D structures [21–24]. Using the ordering of lattice sites and tensors infigure 2 our ground state
is written in the form

A A A A n n ntr , , 16
n n

n n n
N1 2

N

N

1

1 2∣ [ ] ( )∣ ( )åY ñ = ¼ ñ
¼



where n 0, 1m { }Î is the occupation number of themth lattice site. Using a rather straightforward optimization
procedure based on local updates of the tensors, it is possible tominimize the energy, computing the optimal
tensors

A
H

argmin . 17A

∣ ∣
∣

( )=
áY Yñ
áY Yñ

4.2.Winding number fromMPS
After computing the ground state we still have to recover thewinding number asmeasured in a time-of-flight
experiment [14]. In such experiments, the expansion of the atoms in the latticemakes them adopt a Fourier
transformof their original wavefunctions [25],

a wp p pd e , 18i a
p r3 i i˜ ( ) ˜ ( ) ( )† · †ò y

b wp p pd e , 19i b
p r3 i i˜ ( ) ˜ ( ) ( )† · †ò y

where the quasimomentum ismapped to the position of the expanding atoms, m tp r= . In this formula ri

represents the center of the ith lattice cell in the given sublattice, s a b,{ }Î . Theweight w̃ is the Fourier
transformof thewavefunction of an atom trapped in one lattice site. For deep enough lattices this weight can be
taken constant over a large domain.
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The previous expression implies that if wemeasure the spin texture of the expanding atoms

v p p p , 20( ) ˜ ( ) ˜ ( ) ( )† s= áY Y ñ

with themomentum-space operators ,a b
˜ ( ˜ ˜ )† † †y yY = . This texture will be related to the spin texture of the

original bands in the lattice

wv p p e . 21
m n

m n
p r r2

,

i m n( ) ∣ ˜ ( )∣ ( )† ·( )å sµ áY Y ñ -

In particular, when p k= coincideswith a quasimomentum in the BZ, then v k S k( ) ( )µ , up to factors that
drop outwhenwe normalize v to recover S.

Consistently with the previous reasoning, we haveworkedwith theMPSwavefunction computing the vector
field

M
v

1
e , 22k

m n
m n

k r r

,

i m n ( )† ·( )å s= áY Y ñ -

where M M Mk 2, 2 2[ )pÎ ´ - Ä , is a finite sampling of the BZ. For a given sampling, we then compute the
winding number using an accurate formula for the solid angle spanned by every three neighboring pseudospins,
S v v∣ ∣= , on themomentum space lattice [26],

S S S, , , 23
k p q

k p q
, ,

( ) ( )ån = W
á ñ

with the solid angle approximation

a b c a b c

a b c a b c a c b b c a
tan

, ,

2
, 24

( ) · ( )
∣ ∣∣ ∣∣ ∣ ( · )∣ ∣ ( · )∣ ∣ ( · )∣ ∣

( )
⎡
⎣⎢

⎤
⎦⎥

W
=

´
+ + +

that is valid for smallΩ.
Note that the finite nature of this sampling ismotivated by the experimental resolution in the detection of

thewinding number through time-of-flight images. Aswe showed earlier, it is possible to get accurate results

Figure 3. (a) and (b)Winding number as a function of the imparted phaseΦ and the nearest neighbor interaction,U, using
t t t1, 0.1a b= = - = .We plot the outcome of themean-field calculation (a) and of aMPS simulation (b)with 5×5 unit cells (50
sites), either inmomentum (a) or in position space (b). (c)Meanfield average value of z∣ ∣sá ñ . (d)MPS expected value of the phase
separation, n na bx x, ,á ñ (solid), and of the average number of particles per site, na b,á ñ (dash-dot), as a function of the interaction,U/t, for
various fluxes 0pF = (line), 0.5(star) and 1.5 (circle).
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already for very small samplings [14].Moreover, for our theoretical studies with small lattices, it suffices to have
M of the order of the lattice size itself. Indeed, when thewinding number converges, it does so for M N( )~
points.

4.3.MPS technical remarks
There are several important technical remarks regarding theMPS simulations. Thefirst one concerns the use of
conserved quantities in the numerical simulation. For instance, we are free to impose a condition on the total
number of particles in the lattice.We have chosen not to do this, looking for the ground state of the full
Hamiltonian, which is equivalent tominimizing the free energy at zero chemical potential. Thismeans that in
these simulations an increase or decrease of thefilling is possible. Aswewill see below, such a change does not
affect the identification of a topological phase through the observable winding number—a signature of the
robustness of this quantity, as shown already in [14].

The second remark regards the size and type of lattice.MPS simulationswere done for lattices with 4×4,
4×5 and 5×5 cells (32, 40 and 50 sites), the latter showing the clearest signal.We explicitly use open
boundary conditions for theMPSwavefunction for several reasons. First of all, open boundaries are the ones
that best reflect a potential experiment with ultracold atoms. Second, wewish to show that the proposed
measurement of thewinding number is a robust and powerful technique that does not restrict to abstract
geometries, such as tori and spheres. Third, sincewe already have periodic boundaries in themeanfield theory,
agreement between this theory and the open boundary conditionsMPS represents a strong signature that our
approach is correct.

Finally, we have to comment on the size of theMPS, the so called bond dimension. This dimension is the size
of thematrices in (16) and it relates to themaximumamount of entanglement that is available in a bipartition of
the state. The simulations that we showhere are donewith bond dimension 100c = . This restriction is based
on the need to scan in detail thewhole parameter space and the use of long-range interactions induced by the
2D-to-1Dmapping.However, in this particular study, for the observables that we computed, including density
correlations and the full winding number, we have verified that convergence starts already at very low bond
dimensions, such as 30 for the 5×5 lattice. This is one further evidence of the utility ofDMRGorMPS snake
ansätze for small two-dimensional systems, a fact well known in the literature [27, 28]

5. BCS ansatz

Wecan further analyze our system, in the case of attractive (U 0< ) interactions, bymeans of a BCS ansatz. In
order to do so, and to facilitate a comparison, wewill follow the procedure used in [19], which deals with a
similar tight-bindingHamiltonian. Up to trivial factors, theHamiltonian presented there corresponds to the

0F = case in equation (7). The BCS ansatz is based on aWick expansion of the interaction term inmomentum
spacewhich gives

H U b a a b a b , 25
k

kk k k k k k k kintˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )† † † †å= D + D - D á ñ- - -

where N f b ak k1k k k k
2 ( ) ˆ ˆD = - å - ¢ á ñ¢ - ¢ ¢ is computed through a self-consistent calculation. The order

parameters which characterize the phase are nearest–neighbor two particle pairing correlators

a b a b a b, , , 26s s v s s v s s v0 1 2( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )d = á ñ á ñ á ñ+ + +

where vm are again the directions spanned by the three nearest neighbors. Following [19], we rewrite the order
parameter as w um m m∣ ∣d d = å , where the um are a basis for the 3 cyclical permutation group:
u 1, 1, 1 31 ( )= , u 2, 1, 1 62 ( )= - - and u 0, 1, 1 33 ( )= - . A non-zero value of anywm coefficient
(that is, of ∣ ∣d ) signals a superfluid phase, while the particular coefficient renders information about the
symmetry of that phase. Aswewill see below, the results that we obtain in the attractive regime are consistent
with those of Poletti et al [19].

6. Results

Figure 3 summarizes themain results of the previously presentedmethods. Infigures 3(a) and (b)weplot the
winding number of themean-field orMPS simulation of the ground state. Both figures show a strong qualitative
agreement, exhibiting a phase transition from a trivial phase around zero flux, 0F = , into a topological phase at
largerfluxeswhere theHaldane phase is obtained for awide range of interactions.

Along the vertical axis wefind that the topological phase described by thewinding number disappears for
repulsive interactions aroundU t~ . As shown infigure 3(c), this transition is due to a spontaneous symmetry
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breaking of the zs expectation values, signaling the transition into aCDWwhere particles are polarized into one
sublattice or the other.

To confirm the phase separation orCDWorder, we have studied a similar order parameter in theMPS
simulation. In particular, we have computed the expectation value n na bs sá ñ, whichmeasures the coexistence of
atoms in neighboring sites in the honeycomb lattice. For largeU this value decreases continuously down to zero,
confirming the separation of species in the lattice. Interestingly, from the point of view of theCDWorder, this
looks like a cross-over, but from the point of view of thewinding number this looks like sharp phase transition
into a disordered regime.OurMPS simulations cannot resolve if this ismerely an artefact of poor resolution on
the numerical side (for instance because the normof v becomes so small that our computation of thewinding
number is inaccurate).

We have also studiedwhat happens for negative or attractive interactions.WhenU 0< , the ground state
configuration at zero chemical potential has afilling fraction larger than 1/2, that ismore than one particle per
unit cell. Despite this enlarged filling, the ordered phase still persists untilU 1= - , as evidenced by thewinding
number (figures 3(a) and (b)). At this critical interaction the lattice becomes perfectlyfilled (figure 3(d)), forming
aMott insulator with two particles per site. This trivial configuration cannot be reproducedwith themean-field,
because that wavefunction assumed half-filling. In order to study this region of strong attractions we have to use
the BCS ansatz developed above (5). Figures 4(a)–(d) show the outcome of that ansatz. They reveal that the
superconductor phase that was predicted for the honeycomb lattice [19] exists also in the full Haldanemodel.
Most importantly, the symmetry of that phase is strongly dependent on the breaking of time-reversal symmetry
in the non-interacting limit, i.e. of the topological phase of theU=0Hamiltonian.

7.Discussion

Our study reveals that the topological insulator phase survives for a wide range of interaction. This phase is
faithfully detected by thewinding number. Given that earlier exact diagonalizations computed theChern
number in selected regimes of parameters [7, 8], this leads us to conclude that thewinding number can also
reproduce theChern number in interacting systemswithmoderate correlations.

Figure 4.Results from the BCS ansatz. Infigures (b)–(d)we plot the absolute value of the order parameters,wk for k 1, 2, 3= , from
the BCS ansatz (26), whilefigure (a) shows the the norm ∣ ∣d . The solid line delimits where the superconducting order parameter
appears. Note that this happenswell below the lineU 1= - where ourwinding number simulations fail.
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The ideas put forward in this work have very straightforward extensions to othermodels, including other
topological insulators and composite systems [17], and other types of interactions, such as on-siteHubbard
terms or long-range interactions. In all these systems it would be interesting to seewhether thewinding number
may act as a precursor of other strongly correlated phases.

Onemay alsowonder about the applicability of our results to the recent beautiful experiment demonstrating
theHaldanemodel in an optical lattice [12]. This experiment uses laser assisted tunneling to implement ta b, ,
relying on the original lattice to supply t. Comparedwith our original proposal [14], it has the problem that the
small overlap between neighboring sites would lead to a small value ofU. In this case it would bemore
advantageous to implement other types of interactions, such as relying on two-level atoms and implementing
on-site repulsion or attraction. Suchmodels fall out of the scope of this work.Nevertheless, they could be
studied using a generalization of ourMPS andmean-fieldmethods above, combinedwith the study of partial
winding numbers [17] and see how they relate to the global topological structure of the bands.

Finally, wewould like to emphasize themean-field ansatz (8), which could be of interest to other contexts
andmodels. Such amomentum-representationmean-field theory differs fromothermean-field theories that
have been developed in position space [29]. They connect to long-range interaction classical spinmodels that
have been long analyzed in the literature. The connection between thesemodels, the symmetries of the
underlying topological insulator and how these are broken by the interaction terms could be a profitable avenue
to understand the nature of the phase transitions that have been found in this study.
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