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ABSTRACT 36 

Transfer functions are valuable tools in palaeoecology, but their output may not always be 37 

meaningful. A recently-ĚĞǀĞůŽƉĞĚ ƐƚĂƚŝƐƚŝĐĂů ƚĞƐƚ ;͚ƌĂŶĚŽŵTF͛Ϳ ŽĨĨĞƌƐ the potential to distinguish 38 

among reconstructions which are more likely to be useful, and those less so. We applied this test to 39 

a large number of reconstructions of peatland water table depth based on testate amoebae. 40 

Contrary to our expectations, a substantial majority (25 of 30) of these reconstructions gave non-41 

significant results (P>0.05). The underlying reasons for this outcome are unclear. We found no 42 

significant correlation between randomTF P-value and transfer function performance, the properties 43 

of the training set and reconstruction, or measures of transfer function fit. These results give cause 44 

for concern but we believe it would be extremely premature to discount the results of non-45 

significant reconstructions. We stress the need for more critical assessment of transfer function 46 

output, replication of results and ecologically-informed interpretation of palaeoecological data.  47 

KEYWORDS: Testate amoeba; Protist; Palaeoecology; Palaeohydrology; Transfer function; randomTF  48 

INTRODUCTION 49 

Testate amoebae are widely-used proxies in palaeoecological studies; in particular for the 50 

reconstruction of water table depth in peatlands (Charman, 2001; Mitchell et al., 2008). Over the last 51 

25 years palaeoecology has been revolutionised by the use of statistical models (transfer functions) 52 

to quantitatively reconstruct environmental variables. However, questions are increasingly being 53 

raised about the reliability and robustness of transfer function results (Belyea, 2007; Juggins, 2013).  54 

A transfer function will always give an output but that output may not always be meaningful. The 55 

only way to establish whether the output of a transfer function is ͚ƚƌƵĞ͛ ŝs by comparing the results 56 

to independent data, but such data are not always available and even in such cases correlations are 57 

complicated by temporal autocorrelation and the limitations of the chronology.  58 

Although we cannot realistically assess whether all reconstructions are correct we can conceivably 59 

test whether they are potentially useful. Telford and Birks (2011) propose a pragmatic solution: that 60 

a reconstruction can be considered statistically significant if it explains more of the variance in the 61 

fossil data than those of transfer functions trained on randomly-generated data. Telford and Birks 62 

(2011) propose a method, ͚ƌĂŶĚŽŵTF͛, in which: 63 

1. The transfer function is applied to the fossil data to derive a reconstruction (using any 64 

commonly-applied method).  65 

2. The proportion of variance in the fossil data explained by the reconstruction is determined 66 

using constrained ordination. 67 

3. Multiple new transfer functions are derived using the established modern species data but 68 

with the environmental data replaced by uniformly distributed random variables. 69 

4. These transfer functions are applied in turn to the fossil data and the variance they explain 70 

tested. This is repeated a large number of times, typically 999. 71 

5. A reconstruction is considered statistically significant when the proportion of variance 72 

explained is greater than that of 95% of the transfer functions based on randomly-generated 73 

data. 74 



We would expect reliable reconstructions to explain more variance in the fossil data than transfer 75 

functions trained on random data, and therefore to give significant results. However, a significant 76 

randomTF value is not proof of accuracy and a non-significant result does not necessarily imply 77 

inaccuracy. Non-significant results do however give cause for concern and suggest that transfer 78 

function output should be treated with caution. randomTF tests can potentially tell us which 79 

reconstructions we should trust more, which less, and whether we can predict more than one 80 

environmental variable from the same fossil dataset. Telford and Birks (2011) also propose an 81 

alternative test ;͚ŽďƐ͘ĐŽƌ͛Ϳ based on the correlation of optima values with axis species scores from a 82 

constrained ordination of the fossil data. This test is not applicable to all transfer functions methods 83 

and is not considered here. The randomTF test has been applied in a few studies (Amesbury et al., 84 

2013; Lamarre et al., 2013; Swindles et al., 2015a) but is not yet routinely used in testate amoeba 85 

palaeoecology. Here we apply this test to a large number of published and unpublished records with 86 

the aim to identify the characteristics which are likely to lead to better reconstructions, giving better 87 

randomTF results. 88 

METHODS 89 

We identified 30 published and unpublished testate amoeba palaeoecological records (Table 1). 90 

These records span a large range of regions, mire types, analysts, time periods, and sampling 91 

resolutions, and form a large and reasonably representative sample of testate amoeba 92 

palaeoecological research. Reconstructions of water table depth were produced using either the 93 

transfer function used in the original study, the most geographically-appropriate model where a 94 

transfer function was not previously applied, or in a few cases transfer functions which have been 95 

produced since the data were originally published. Taxonomy was harmonised between the fossil 96 

data and training set, which in many instances required the grouping or deletion of some taxa 97 

(performance statistics may therefore differ slightly from those previously published). Transfer 98 

functions were applied based on the model selected by the original authors with sample specific 99 

errors calculated by bootstrapping (1000 cycles). All transfer functions were based on either 100 

weighted averaging, weighted averaging with tolerance downweighting or weighted average-partial 101 

least squares (Birks, 1995). We applied randomTF using 999 permutations with redundancy analysis 102 

as the ordination method.  Analyses were conducted in R3.1.2 (R Development Core Team, 2014) 103 

using the packages analogue (Simpson, 2007), rioja (Juggins, 2009) and palaeoSig (Telford, 2011). 104 

RESULTS and DISCUSSION 105 

Only five of the 30 tests yielded a significant P-value (P<0.05; Table 1). While we expected that some 106 

reconstructions would give non-significant results this proportion is much higher than we 107 

anticipated. While a few reconstructions fail to reach P=0.05 by a relatively narrow margin (Tørvesø 108 

1, Staroselsky Moch, Dot Lake B), many more have P-values which substantially exceed this value.  109 

Another two records published in the literature have given significant P-values: those of Swindles et 110 

al. (2015a) for Stordalen, Sweden and Lamarre et al. (2013) for Lac Le Caron, Canada. Amesbury et 111 

al. (2013) found a significant result for the Nordans Pond site of Hughes et al. (2006) using an 112 

extended transfer function, whereas here we find a non-significant result using the transfer function 113 

used in the original study (Charman and Warner, 1997). In the latter three cases multiple model 114 

structures were tested with some producing significant reconstructions, and some not. We note that 115 

in these instances a correction for multiple comparisons (such as a Bonferroni correction) would 116 



probably have meant that the reconstructions did not reach significance. However, even if these 117 

results are included, eight significant P-values out of 32 reconstructions remains a surprisingly low 118 

proportion.  119 

Telford and Birks (2011) identify four factors which might make the randomTF test prone to type II 120 

error ;͞ĨĂůƐĞ ŶĞŐĂƚŝǀĞ͟Ϳ: low numbers of effective species; small numbers of fossil samples; limited 121 

variability in the reconstruction and poorly-performing or poorly-fitting transfer functions. All of 122 

these factors apply to some of the reconstructions we examine but it is not clear that any are a 123 

consistent cause of non-significant P-values. Overall, P-value was not significantly correlated with 124 

properties of the training set (mean/standard deviation/range of WTD) or fossil data (species 125 

ƌŝĐŚŶĞƐƐ͕ Hŝůů͛Ɛ NϮ Žƌ ŶƵŵďĞƌ ŽĨ ƐĂŵƉůĞƐͿ, performance metrics of the transfer function (leave one 126 

out RMSEP or R2), properties of the reconstruction (mean/standard deviation/range of predications, 127 

ratio of range to RMSEP or training set range, mean boot-strapped error estimates) or measures of 128 

transfer function fit (proportion of shared taxa, proportion of fossil samples with poor modern 129 

analogues, squared residual length)(Spearman Rs; P>0.05). P-value was strongly correlated with the 130 

proportion of variance in the fossil data explained by the reconstruction (Spearman Rs=-0.89, 131 

P<0.001), suggesting (unsurprisingly) that where a high proportion of variance is explained this is 132 

unlikely to be exceeded by transfer functions trained on random data.  133 

The five reconstructions yielding significant results were three short records from the Elatia Forest of 134 

northern Greece (Dexameni; Krya Vrissi 1&2; Payne and Pates (2009)), the high-resolution 135 

Mauntschas record from the Swiss Alps (Lamentowicz et al., 2010; van der Knaap et al., 2011) and a 136 

record from Frasne in the Jura Mountains of eastern France (Jassey et al. unpublished). These five 137 

records have little obvious similarity. The transfer functions used for the Dexameni, Krya Vrissi and 138 

Mauntschas reconstructions all included samples from the same sites and for Frasne the closest 139 

training set site was only c.10 km distant. However, ten of the sites with non-significant 140 

reconstructions were also included in their respective training sets. The three short records from 141 

Greece (Payne and Pates, 2009) are all characterised by a single large change ʹa shift to drier 142 

conditions in the recent past but this is not a feature of the Frasne or Mauntschas records and some 143 

non-significant reconstructions are similar (e.g. Andorra: van Bellen et al., in press).  144 

Non-significant reconstructions include studies where it is difficult to see any a priori reason to 145 

suspect problems: sites with high resolution, good numbers of samples and species, transfer 146 

functions which perform well in cross-validation, include samples from the same site with good 147 

overlap in assemblage and with modern and fossil samples counted by the same analyst (e.g. Dead 148 

Island: (Swindles et al., 2010), Minden: Booth and Jackson (2003)). Non-significant results in these 149 

instances are a real surprise. 150 

Our results provide some evidence that where there is a choice of transfer function this can affect 151 

randomTF significance level. With the Nordans Pond record (Hughes et al., 2006) the transfer 152 

function used in the original publication yields a non-significant P-value (P=0.83; Table 1) while a 153 

more recent transfer function with a larger training set and better performance statistics gives a 154 

significant P-value (Amesbury et al., 2013). With the Frasne record (Jassey and Gilbert unpublished) 155 

marginally better results are found with the smaller and weaker-performing, but geographically 156 

closer, Jura transfer function (Mitchell et al., 1999) than the larger, better-performing, north-west 157 

Europe model (Charman and Blundell, 2007) although both are P<0.05. It is also probable that in 158 



borderline cases difference in selection of model or samples included in the training set or fossil data 159 

might make the difference between a P-value above or below the usual threshold of 0.05 (cf. 160 

Amesbury et al., 2013; Swindles et al., 2015).  161 

So what should we take from these results?  162 

Interpreting these findings is a challenge and among the authors of this paper there is a considerable 163 

range of viewpoints. In the original paper Telford and Birks (2011) ƐƚĂƚĞ ƚŚĂƚ ͚reconstructions that fail 164 

this test have limited credibility and should be treated with considerable caution͛͘ On this basis these 165 

results could be taken to question the reliability of a substantial proportion of published testate 166 

amoeba water table reconstructions and thus raise questions about the approach as a whole.  167 

However there are also strong arguments for a more cautious interpretation. Unlike many proxies 168 

the ecological underpinnings of testate amoeba palaeoecology are strong. The thickness of water 169 

films, for which water table depth is a surrogate, ĚĞƚĞƌŵŝŶĞ ĂŶ ĂŵŽĞďĂ͛Ɛ ĂďŝůŝƚǇ ƚŽ ŵŽǀĞ ĂŶĚ ĨĞĞĚ, 170 

(although seasonal variability is an important area of uncertainty: (Marcisz et al., 2014b)). Numerous 171 

modern studies have found significant correlations between amoeba communities and water table 172 

depth (Mitchell et al., 2008) and studies have begun to support this link experimentally (Marcisz et 173 

al., 2014a; Mulot et al., 2014). While there undoubtedly are both practical and fundamental issues 174 

which can complicate palaeoecological reconstruction, many of these are common to other proxies 175 

and archives. Most testate amoeba analysts would expect our reconstructions to satisfy the 176 

fundamental requirements for quantitative palaeoecology laid out by Birks (1995). 177 

A substantial proportion of all applications of the randomTF test, with a variety of proxies in a variety 178 

of settings, have produced non-significant results (Cwynar et al., 2012; Luoto et al., 2014; Salonen et 179 

al., 2013; Wooller et al., 2012). If non-significant results are so common it is arguable that the test 180 

may be overly pessimistic. In the case of the records we consider here it can be argued that there 181 

are reasons to accept many of the non-significant reconstructions based on correlations between 182 

proxies and with independent data sources. There are also an increasing number of studies which 183 

show transfer functions to have acceptable performance when tested with independent data (Payne 184 

et al., 2012; Swindles et al., 2015b). The increasing number of pitfalls and caveats which have been 185 

identified in transfer functions over recent decades should be a warning to palaeoecologists of the 186 

dangers of uncritical acceptance of new statistical methods.  187 

It is important to reiterate that even from the most sceptical viewpoint a non-significant randomTF 188 

P-value does not prove that a reconstruction is invalid. It would be very premature to discount the 189 

results of reconstructions identified as non-significant here; even non-significant reconstructions 190 

may still be useful. However the unexpected finding that many reconstructions fail this test clearly 191 

shows the requirement for a more detailed and critical assessment of reconstructions and a better 192 

understanding of the factors which cause non-significant results. Transfer function reconstructions 193 

should always be accompanied by thorough ecological interpretation of the record. For instance 194 

where a dry shift is reconstructed by the transfer function on the basis of a switch in dominance 195 

from Archerella flavum to Trigonopyxis arcula this can probably be considered robust given the well-196 

understood hydrological preferences of these two taxa. However a similar reconstructed change 197 

should be treated with much greater caution if it is based on a change in dominance from (for 198 

instance) Heleopera petricola to Cryptodifflugia sacculus; taxa with much less well-understood 199 

ecological preferences.  200 



Replication of results among cores, sites, proxies and archives, and informed ecological 201 

interpretation of the primary data remain the best ways for palaeoecologists to ensure that our 202 

results are valid and useful.  203 
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Palaeoecological data Contemporary data Transfer 

function 

method 

Leave-one-out Reconstruction 

range (cm) 

Mean 

boostrap SE 

(cm) 

Proportion 

explained 

variance 

Random TF 

p R
2
 RMSEP 

(cm) 

Krya Vrissi-1 (Payne and Pates, 
2009) 

Greece (Payne and Mitchell, 2007) WA-PLS(2) 0.75 2.02 11.20 0.70 0.58 <0.01 

Krya Vrissi-2 (Payne and Pates, 
2009) 

Greece (Payne and Mitchell, 2007) WA-PLS(2) 0.75 2.02 10.00 2.00 0.50 
 

0.01 

Dexameni (Payne and Pates, 
2009) 

Greece (Payne and Mitchell, 2007) WA-PLS(2) 0.75 2.02 6.00 2.00 0.35 0.05 

Jigsaw Lake (Mitchell and 
Kishaba unpublished) 

Alaska (Payne et al., 2006) WA-PLS(2) 0.55 9.82 28.60 10.60 0.27 0.17 

Dot Lake B (Payne and Mitchell, 
2009) 

Alaska (Payne et al., 2006) WA-PLS(2) 0.55 9.82 53.40 11.10 0.26 0.10 

“ƺƌŵĞŶĞ AŒĂĕďĂƔŝ YĂǇůĂƐŝ (Payne 
et al., 2008) 

Turkey (Payne et al., 2008) WA-PLS(2) 0.57 7.22 65.10 12.08 0.43 0.62 

Mauntschas (van der Knaap et 
al., 2011) 

Engadine (Lamentowicz et al., 2010; 
Mitchell et al., 2013) 

WA-tol(Inv) 0.70 9.80 48.94 10.80 0.39 0.02 

Mukzra (Lamentowicz and 
Obremska, 2010) 

Poland (Lamentowicz et al., 2008) WA-tol(Inv) 0.60 8.90 20.46 9.24 0.16 0.65 

Jelenia Wyspa (Lamentowicz et 
al., 2007) 

Poland (Lamentowicz et al., 2008) WA-tol(Inv) 0.60 8.90 10.96 9.18 0.12 0.50 

Tuchola (Lamentowicz et al., 
2008) 

Poland (Lamentowicz et al., 2008) WA-tol(Inv) 0.60 8.90 19.53 9.11 0.10 0.80 

“ƚČǏŬŝ (Lamentowicz et al., 2013) Poland (Lamentowicz et al., 2008) WA-tol(Inv) 0.60 8.90 54.35 9.14 0.03 0.98 

Praz Rodet (Mitchell et al., 2001) Jura (Mitchell et al., 1999) WA-PLS(2) 0.61 8.13 50.10 11.38 0.09 0.97 

Minden (Booth and Jackson, 
2003) 

North America (Booth, 2008) WA-tol(Inv) 0.75 7.79 39.38 7.92 0.24 0.20 

Dead Island (Swindles et al., 
2010) 

Northern Ireland (Swindles et al., 2009) WA-tol(Inv) 0.83 4.99 38.66 5.91 0.19 0.42 

Nordans Pond Bog (Hughes et 
al., 2006) 

Newfoundland (Charman and Warner, 
1997) 

WA-tol(Inv) 0.65 6.98 16.25 7.68 0.07 0.83
1
 

Butterburn Flow A (Hendon et 
al., 2001) 

Northwest Europe (Charman and Blundell, 
2007) 

WA-PLS(2) 0.71 5.63 27.84 5.81 0.31 0.14 

Butterburn Flow B (Hendon et 
al., 2001) 

Northwest Europe (Charman and Blundell, 
2007) 

WA-PLS(2) 0.71 5.63 12.42 5.87 0.12 0.86 

Creusate (Jassey et al. Jura (Mitchell et al., 1999) WA-PLS(2) 0.61 8.13 31.75 10.76 0.09 0.93 



unpublished) 

Frasne (Jassey et al. 
unpublished) 

Jura (Mitchell et al., 1999) WA-PLS(2) 0.61 8.13 42.80 9.58 0.41 0.01
2
 

Tørvesø 1 (Ellershaw, 2004) Northwest Europe (Charman and Blundell, 
2007) 

WA-PLS(2) 0.71 5.63 40.11 11.58 0.56 0.09 

Gjótarholt (Ellershaw, 2004) Northwest Europe (Charman and Blundell, 
2007) 

WA-PLS(2) 0.71 5.63 12.85 7.16 0.19 0.75 

Hill of Shurton (Ellershaw, 2004) Northwest Europe (Charman and Blundell, 
2007) 

WA-PLS(2) 0.71 5.63 18.77 7.05 0.16 0.91 

Andorra (Van Bellen et al. 
submitted)

3
 

Patagonia (Van Bellen et al., 2014) WA-PLS(2) 0.72 13.49 
 

66.98 14.99 0.13 0.90 

Tierra Australis (Van Bellen et al. 
submitted)

3
 

Patagonia (Van Bellen et al., 2014) WA-PLS(2) 0.72 13.49 71.43 14.86 0.17 0.82 

Karukinka (Van Bellen et al. 
submitted)

3
 

Patagonia (Van Bellen et al., 2014) WA-PLS(2) 0.72 13.49 37.99 15.36 0.24 0.66 

Imnati (Payne, 2014) Eastern Mediterranean (Payne, 2011) WA-PLS(2) 0.75 9.34 44.42 9.94 0.08 0.80 

Didadjara (Mazei et al. 
unpublished) 

Eastern Mediterranean (Payne, 2011) WA-PLS(2) 0.75 9.34 15.59 10.44 0.09 0.98 

Staroselsky Moch (Payne et al., 
in press) 

Russia (Tsygnov et al. submitted) WA(Inv) 0.73 5.64 29.05 5.89 0.30 0.10 

Kluvka Mire (Novenko et al., 
2015) 

Russia (Tsygnov et al. submitted) WA(Inv) 0.73 5.64 22.67 6.04 0.32 0.28 

Malham Tarn Moss (Turner et 
al., 2014) 

Northern England (Turner et al., 2013) WA-tol(Inv) 0.70 7.56 30.36 8.42 0.18 0.64 

1 Note that using a larger alternative training set and a WMAT model (but not an ML or WA-tol(Inv) model) Amesbury et al. (2013) did find a significant result for this record, suggesting that choice of training set can have a strong influence on 

significance level. 

2 A significant result but with slightly lower significance level (P=0.04) is produced if using the Northwest Europe transfer function (Charman and Blundell, 2007).  

3 randomTF results previously presented by van Bellen et al. (submitted), recalculated here.  

 


