

This is a repository copy of Etiological Role and Repeated Infections of Sapovirus among Children Aged Less than 2 Years in a Cohort Study in a Peri-urban Community of Peru.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/99782/

Version: Accepted Version

Article:

Liu, X, Jahuira, H, Gilman, RH et al. (18 more authors) (2016) Etiological Role and Repeated Infections of Sapovirus among Children Aged Less than 2 Years in a Cohort Study in a Peri-urban Community of Peru. Journal of Clinical Microbiology, 54 (6). pp. 1598-1604. ISSN 0095-1137

https://doi.org/10.1128/JCM.03133-15

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Etiological role and repeated infections of sapovirus among children
2	aged less than two years in a cohort study in a peri-urban community of Peru
3	Xiaofang Liu ¹ , Helena Jahuira ² , Robert H. Gilman ³ , Alicia Alva ⁴ , Lilia Cabrera ⁵ ,
4	Michiko Okamoto ¹ , Hang Xu ¹ , Henry J Windle ⁶ , Delmot Kelleher ⁶ , Marco Varela ⁵ ,
5	Manuela Verastegui ² , Maritza Calderon ² , Gerardo Sanchez ² , Vanessa Sarabia ² , Sarah B
6	Ballard ³ , Caryn Bern ⁷ , Holger Mayta ² , Jean E Crabtree ⁸ , Vitaliano Cama ⁹ , Mayuko
7	Saito ¹ *, Hitoshi Oshitani ¹
8	
9	¹ Department of Virology, Tohoku University Graduate School of Medicine (TU), Sendai,
10	Japan; ² Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano
11	Heredia (UPCH), Lima, Peru; ³ Department of International Health, Johns Hopkins
12	University Bloomberg School of Public Health (JHSPH), Baltimore, USA; ⁴ Laboratory
13	of Bioinformatics and Molecular Biology, Universidad Peruana Cayetano
14	Heredia (UPCH), Lima, Peru; ⁵ Asociación Benéfica PRISMA (PRISMA), Lima, Peru;
15	⁶ Department of Clinical Medicine, Trinity College, Dublin, Ireland; ⁷ Department of
16	Epidemiology and Biostatistics, University of California San Francisco, San Francisco,

17	USA; ⁸ Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds,
18	United Kingdom; ⁹ Division of Parasitic Diseases and Malaria, Center for Global Health,
19	Centers for Disease Control and Prevention (CDC), Atlanta, USA.
20	*Correspondence Author: Mayuko Saito
21	Address: 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan, Telephone:
22	+81-(0)22-717-8211, Email: msaitop@gmail.com, msaitop@med.tohoku.ac. jp
23	
24	Running title: Etiological role and repeated infections of sapovirus
25	
26	Abstract
27	Human sapovirus has been shown to be one of the most important etiologies in pediatric
28	patients with acute diarrhea. However, very limited data are available about the
29	causative roles and epidemiology of sapovirus in community settings. A nested matched
30	case-control study within a birth cohort study of acute diarrhea in a peri-urban
31	community in Peru from 2007 to 2010 was conducted to investigate the attributable
32	fraction (AF) and genetic diversity of sapovirus. By quantitative reverse transcription

33	real-time polymerase chain reaction (RT-qPCR), sapovirus was detected in 12.4%
34	(37/299) of diarrheal and 5.7% (17/300) of non-diarrheal stools (p=0.004). Sapovirus
35	AF (7.1%) was higher in the second (13.2%) than the first year (1.4%) of life of
36	children. Ten known genotypes and one novel cluster (n=5) within four genogroups (GI,
37	GII, GIV and GV) were identified by phylogenetic analysis of partial VP1 gene. Further
38	sequence analysis of full VP1 gene revealed a possible novel genotype, tentatively
39	named as GII.8. Notably, symptomatic reinfections with different genotypes within the
40	same (n=3) or different genogroups (n=5) were observed in eight children. Sapovirus
41	exhibited high attributable burden for acute gastroenteritis especially in the second year
42	of life of children in a Peruvian community. Further large-scale studies are needed to
43	understand better the global burden, genetic diversity, and repeated infections of
44	sapovirus.
45	Key words: sapovirus; diarrhea; attributable fraction; genotype, case-control study

47 Introduction

48 Acute diarrhea is one of the most important causes of morbidity and mortality in

49	pediatric populations especially in developing countries. Rotavirus, norovirus and other
50	viruses are common causative etiological agents and rotavirus accounts for about 440,
51	000 child deaths annually (1), whilst norovirus is a leading cause of epidemic and
52	sporadic acute diarrhea (2). Currently a rotavirus vaccination program has been
53	implemented in 80 countries as a part of national immunization programs
54	(http://sites.path.org/rotavirusvaccine/rotavirus-vaccines/#global-intro). It successfully
55	reduced the number of hospitalizations and deaths due to acute gastroenteritis (3, 4) and
56	is cost-effective (5). Norovirus has now replaced rotavirus as the leading cause of
57	medically attended acute diarrhea in pediatric populations (6, 7) and sapovirus,
58	belonging to a separate genus of the Caliciviridae family, has been reported as the
59	second most commonly detected virus after norovirus in children with acute diarrhea
60	where rotavirus vaccination was implemented (8, 9). In addition, reports on sapovirus
61	outbreaks across all age groups have increased in South Asia, Europe and North
62	America recently (10-14).

63 The genome of sapovirus consists of a positive-sense, single-stranded RNA with
64 two open reading frames (ORFs) (12). ORF1 encodes the nonstructural proteins and a

65	major capsid protein, VP1, and ORF2 encodes a protein whose function is still unknown
66	(12). Like norovirus, multiple genetic clusters of human sapovirus have been reported
67	including four genogroups (GI, GII, GIV, and GV) with 17 genotypes (GI.1-7, GII.1-7,
68	GIV.1, GV.1-2) (12). Mild acute diarrhea, severe and even fatal sapovirus infections
69	have been documented (15, 16). Viral shedding lasts about two weeks after onset of
70	symptoms (17, 18). Serological studies have identified that sapovirus infection are very
71	common during early childhood, however, epidemiology and protective immunity in
72	community settings have rarely been investigated. Sapovirus was identified as a
73	significant viral etiological agent in children in limited etiological studies of acute
74	diarrhea, which targeted multiple pathogens (19-21). To understand the etiological role
75	and genetic diversity of sapovirus for acute diarrhea, we conducted a nested matched
76	case-control study by analyzing selected samples from a birth cohort study of acute
77	diarrhea in a Peruvian peri-urban community conducted between June 2007 and May
78	2010 (22).

80 Materials and Methods

81 Stool sample selection

82	Stool samples collected during or one day after diarrhea episodes (n=862) were
83	considered as diarrhea sample in this study. We stratified the samples previously tested
84	for norovirus (22) by eight age groups (0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, and
85	21-23 months) and four seasons (Dec-Feb, Mar-May, Jun-Aug and Sep-Nov). We
86	assumed sapovirus should be detected in at least 5% of diarrheal episodes in children
87	under two years based on detection rates of 5.4-16.6% by quantitative real-time PCR
88	(qPCR) reported in two population based studies (9, 21). To ensure that at least 1
89	positive sample was detected in each age group, at least 20 samples were tested per
90	group. Finally, 300 diarrheal stools (26-44 stools per age group) representing 34.2% of
91	862 episodes were randomly selected by using Stata 13 (StataCorp, College Station, TX,
92	US). One non-diarrheal control specimen per diarrheal stool was selected at random,
93	matched by age group and season using Stata 13. Non-diarrheal stools were defined as
94	stools which were not collected within the diarrhea episode, nor within a week before
95	the first day of diarrhea episodes, or within two weeks after the last day of diarrhea
96	episodes, based on sapovirus incubation period (12) and duration of virus shedding (17,

97	18). Both diarrhea and non-diarrhea samples were selected from the samples previously
98	tested for norovirus and included regardless of norovirus test results. Among 600
99	randomly selected samples, three samples (all negative for norovirus) were not available
100	in the specimen bank and two of them were replaced with other samples in the same
101	age-season category, therefore 599 samples were included in the analysis.
102	Quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR)
103	for sapovirus
104	Viral nucleic acid was extracted from 140 μ l of 10% stool suspension using
105	QIAamp viral RNA mini kits (Qiagen, Hilden, Germany). Complementary DNA
106	(cDNA) was synthesized by M-MLV reverse transcriptase kits with random primers
107	(Life Technologies, Carlsbad, CA, USA). qPCR targeting polymerase-VP1 junction of
108	sapovirus was performed on an ABI 7500 Fast Real-Time PCR system (Life
109	Technologies), using previously described primers and probes (23). The detection limit
110	of qPCR, which was determined by standard curves generated with 10-fold serial
111	dilutions (10 ⁷ to 10 copies/ μ l) of sapovirus GII.1 standard plasmid, was 100 copies/ μ l of
112	cDNA corresponding to the cycle threshold (Ct) value of 38 at amplification of total 45

113 cycles. A sample with a Ct value <38 was considered to be positive for sapovirus and

three positive and one negative controls were included in each assay.

114

115 Genotyping and sequence analysis

116 Sapovirus positive samples were further amplified by hemi-nested PCR targeting 117 partial VP1 gene (720 nt, 5159–5878 nt corresponding of Manchester X86560) with the 118 external primers SV F13/F14 (24) and SaV 5857R-1/-2, and internal primers SaV 119 F1245 (23) and SaV 5857R-1/-2 (Supplementary Table 1). Cycling conditions for the 120 first and second rounds of hemi-nested PCR were 94°C for 5 min, 35 cycles of 94°C for 12130 sec, 50°C for 30 sec and 72°C for 1 min, followed by 1 cycle of 72°C for 10 min. 122For the possible new genotype of sapovirus, the full VP1 gene was amplified with 123 primer pair SV F13/F14 and SaV GIIR under same cycling conditions as hemi-nested 124PCR. PCR products were sequenced using BigDye Terminator chemistries V1.1 (Life 125Technologies) in a 3730 Genetic Analyzer (Life Technologies). Resulting sequences 126were BLAST-verified and all unique sequences were deposited in GenBank (Accession 127No. KT276516-KT276558, KU886206-KU886207, and KT306742). Genogroups and 128 genotypes were characterized by phylogenetic analysis of partial VP1 gene (606nt,

129	5236–5841 nt corresponding of Manchester X86560) (12) using the maximum
130	likelihood method (Kimura 2-parameter model) in MEGA 5 (25). In addition, pairwise
131	distances were calculated using Kimura 2-parameter method in MEGA 5 and the cut-off
132	values to designate the same sapovirus genotypes and genogroups were \leq 0.169 and \leq
133	0.488, respectively (12, 26).

134 Statistical analysis

135 Unadjusted attributable fraction (AF) for estimating sapovirus burden of diarrhea

136 was calculated by using the following formula (27);

$$AF = \Pr(SaV \middle| diarrhea) \left(1 - \frac{1}{OR} \right)$$

where Pr(sapovirus/diarrhea) is the proportion of sapovirus in diarrhea stools and OR is
the odds ratio of sapovirus for diarrhea and non-diarrhea. The median Ct value between
diarrheal and non-diarrheal stools was compared by Mann-Whitney U test, using Stata

141 13 (StataCorp).

142 **Ethics statement**

143	Mothers provided written informed consent and the study was approved by the
144	Ethics Committees of Tohoku University Graduate School of Medicine, Asociación
145	Benéfica PRISMA, Universidad Peruana Cayetano Heredia (UPCH), Johns Hopkins
146	University, the Centers for Disease Control and Prevention (CDC), and the European
147	Union.
148	
149	Results
150	Three hundred non-diarrheal and 299 diarrheal stools (one diarrheal stool in age
151	group 18-20 was not available) were tested for sapovirus. Sapovirus was detected in
152	9.0% (54/599) of stools from children aged under 24 months, with 12.4% in diarrheal
153	(37/299) and 5.7% in non-diarrheal stools $(17/300)$ (p=0.004, Figure 1). In qPCR, the
154	median Ct values were significantly lower in diarrheal than non-diarrheal samples (24
155	vs. 29, p=0.024). Among the 37 sapovirus-associated episodes, the median duration of
156	diarrhea was 3 days (interquartile range [IQR], 2-5 days). The median maximum daily
157	number of diarrheal stools was four (IQR, 3.5-5.5). Fifteen episodes (40.5%) had
158	vomiting and only four episodes (10.8%) had fever. Detection rates of sapovirus in

159	diarrheal stools were higher in children aged 12-23 months (18.6%, 27/145) than
160	children aged <12 months (6.5%, 10/154) (p=0.002) and those in non-diarrheal stools
161	were similar between the two age groups (5.2% vs. 6.2%). The sapovirus AF (7.1%)
162	was higher in second (13.2%) than first year of life of children (1.4%). Sapovirus was
163	not detected in diarrheal stools of children aged 0-5 months (Figure 1), although only
164	68 diarrhea samples of 194 episodes were tested in this age group. Sapovirus was
165	detected together with norovirus in four diarrheal stools in the age group of 12-23
166	months.
167	Of 54 qPCR positive specimens, 45 specimens (83.3%) from 2007 to 2010 were
168	successfully sequenced. Genogroup I (n=21) and genogroup II (n=16) were detected
169	more frequently than genogroup IV (n=3) and genogroup V (n=5). Among these
170	genogroups, ten known genotypes (GI.1, GI.2, GI.6, GI.7, GII.1, GII.2 GII.4, GII.5,
171	GIV, and GV.1) were identified (Figure 2). Most genotypes were detected both in
172	diarrhea and non-diarrhea stools except two genotypes (GII.5 and GIV), which were
173	found only in one and three diarrhea stools, respectively. Interestingly, five Peruvian
174	sequences together with strains detected in USA (HM59058) and Taiwan (KM092511)

175	fell into a distinct cluster in GII with less than 78% similarity with other genotypes of
176	GII based on the partial VP1 gene. We further sequenced the full VP1 of one diarrhea
177	strain in this cluster and found that this Peruvian VP1 together with another full VP1
178	from Taiwan (KM092511) also formed a distinct cluster from other GII genotypes at the
179	phylogenetic tree of nucleotides (supplementary Figure 1) and amino acid sequences
180	(Figure 3). Moreover, the pairwise nucleotide distance of Peruvian VP1 from other
181	GII.1–7 genotypes (0.298–0.468) was larger than 0.169. Therefore, this cluster could be
182	tentatively classified as a novel genotype and the tentative genotype of GII.8 is
183	proposed.
184	Eight children had two sapovirus infections detected within short time (the interval
185	of two infections ranging from 20 days to 19 months, see Table 1). Five of these
186	children had repeated infections with a virus belonging to a different sapovirus
187	genogroup, and three children had repeated infections with a different genotype of the
188	same genogroup. All first and second infections of the eight children were symptomatic,
189	except in one child where the first infection with GII.1 was asymptomatic and the
190	second with GII.2 was symptomatic. None of repeated infections of sapovirus had

191	concurrent norovirus infection. The median Ct value of both the first (21, IQR,
192	17.5–25.5) and second infections (21, IQR, 15.8–27.6) were relatively low, suggesting
193	that both infections had relatively large viral load. In addition, one child was considered
194	to have shed sapovirus at 25 days after the onset of diarrhea since one diarrheal stool
195	(Peru-406-D, Ct=24.2) and one non-diarrheal sample (Peru-426-ND, Ct=33.5) collected
196	from the same child were found to contain the same GII.4 strain (Figure 2).
197	
198	Discussion
199	We determined the positive rate and genotype distribution of sapovirus in a birth cohort study in Peru.
200	Sapovirus had a considerable attributable burden of 7.1% for acute diarrhea in children under two years
201	old in this community. In sapovirus infected children less than two years old, vomiting was frequently
202	reported, while fever was rarely reported. The median duration of sapovirus diarrhea observed in this
203	study was similar to the previously reported duration of 3-5 days (8, 17). When compared to other
204	etiological studies of sapovirus, the overall detection rate of sapovirus in symptomatic children (12.4%) in
205	this study was similar to that in UK (11.1%) (19) and Nicaragua (16.6%) (9), but higher than in the
206	Netherlands (7.8%) (20) and USA (5.4%) (21). The detection rate of sapovirus in asymptomatic children

207	observed (5.7%) in this study was similar to that in USA (4.2%) (21), but higher than in the Netherlands
208	(1.8%) (20), UK (2.4%) (19) and Nicaragua (1.9%) (9). Our results are comparable with recent reports
209	from other continents, in which sapovirus was commonly detected in pediatric gastroenteritis (8, 28-31).
210	Possible reasons of increased detection rates of sapovirus include the emerging genotypes (10, 29, 31),
211	the implementation of rotavirus vaccination (9), and application of more sensitive molecular diagnostic
212	assays (32, 33). Limited data of sapovirus in South America is available (34) and more studies are needed
213	to confirm a clinical and public health significance of sapovirus in this region.
214	Our study found that sapovirus is more likely to be associated with acute diarrhea in the second year
215	of life of children, as described for norovirus in the same cohort (22). This finding was supported by
216	several recent reports, in which sapovirus was detected more commonly in symptomatic children aged
217	12-23 months than <1 year (9, 21, 35, 36). Lower detection rates of sapovirus in children aged <1 year
218	possibly reflect a protective effect of breastfeeding and/or transferred maternal antibodies (22, 37), as
219	supported by the fact that we did not detect sapovirus in symptomatic children under 6 months.
220	In this study, ten known genotypes and one novel cluster were detected, and none
221	of them appeared to be predominant, which differed from norovirus GII.4, having been
222	predominant in the same cohort (22) or worldwide for past two decades (38). The

223	emerging genotypes GI.2 and GIV, which caused outbreaks in various countries recently
224	(10, 11, 14, 15), were detected, but not as dominant genotypes in this Peruvian
225	community. Some uncommon genotypes of sapovirus such as GI.6, GI.7, GII.4 and
226	GII.5 were observed. Five strains detected from 2008-2009 formed a distinct cluster
227	and appear to belong to a novel genotype. BLAST searches from GenBank showed
228	similar sequences deposited from South Africa (2010 and 2013), USA (2010), China
229	(2011) and Taiwan (2014). Noteworthy, the strains in USA and Taiwan were associated
230	with outbreaks of diarrhea, suggesting its wide distribution and pathogenicity. Currently,
231	two complete VP1 sequences for this possible novel genotype are available from two
232	countries (Peru and Taiwan), and it is tentatively proposed as GII.8, following both
233	phylogenetic analysis of amino acid sequence (39) and pairwise distance classification
234	proposed by Oka, T et al (12).

The cohort study design allowed us to identify repeated sapovirus infections in same child. Five children had symptomatic reinfections with different genogroups, and a similar observation was reported in two patients in Japan (40). Also, the occurrence of natural reinfections in pigs by different porcine sapovirus genogroups has been recently

239	reported (41). In addition, we found three children experienced a second diarrheal
240	episode caused by a different sapovirus genotype in a period of less than one month to
241	19 months. In the same cohort, children were found to commonly experience multiple
242	diarrheal episodes with different norovirus GII genotypes and therefore it was
243	speculated that children can develop genotype-specific immunity of norovirus with only
244	a modest level of cross-protection even within the same genogroup (22). In contrast,
245	very little information is available about protective immunity against sapovirus
246	infection. The serum collected from naturally infected human or immunized animals
247	with recombinant VP1 protein of sapovirus were shown to be moderately cross reactive
248	against the heterologous genotypes and weakly with heterologous genogroups of
249	sapovirus (42-44). Large-scale studies are needed to investigate whether protective
250	immunity for sapovirus is genotype specific or not since the number of children with
251	reinfections in this study was small due to limited sample size.
252	One of the limitations of this study was that samples were not tested for other
253	enteric pathogens except norovirus, therefore co-infections of sapovirus with other
254	pathogens was not analysed. The attribution of sapovirus in acute diarrhea should be

255validated in the future study including other major enteric pathogens. Also, a small 256proportion of symptomatic cases may shed sapovirus longer than two weeks after onset 257of illness, as seen in the current and other studies (17, 18), therefore the prevalence of 258sapovirus in asymptomatic children in this study could be slightly over-estimated and 259the viral shedding pattern need to be furthered explored. 260 In conclusion, recent epidemiological reports have highlighted the importance of 261 sapovirus in acute diarrhea, especially after rotavirus vaccine implementation, but the 262etiological role and epidemiology of sapovirus remains to be clarified. We found 263sapovirus exhibited high attributable burden of acute diarrhea especially in the second 264year of life in a peri-urban community in Peru. Co-circulation of multiple genotypes 265with a possible novel genotype and symptomatic reinfection with different genotypes 266within the same or different genogroups were observed. Further large-scale studies are 267needed to define the global burden, incidence and the protective immunity of sapovirus 268infection. 269

270 **Notes**

271 Financial support

- 272 This work was supported by the Sixth Framework Programme of the European Union,
- 273 Project CONTENT (INCO-CT-2006-032136), Population Health Metrics Research
- 274 Consortium Project, the Centers for Disease Control and Prevention, National Institute
- of Allergy and Infectious Diseases at National Institute of Health (1R21AI099737-01),
- and Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from
- 277 Japan Agency for Medical Research and Development. X Liu was sponsored by China
- 278 Scholarship Council.

279 Acknowledgement

- 280 We thank the community of San Juan de Miraflores for their long-term collaboration
- and the field staff for their hard work. We acknowledge Tohma K. and Khandaker I. for
- their technical assistance.
- 283 CDC Disclaimer: The findings and conclusions in this report are those of the authors
- and do not necessarily represent the views of the Centers for Disease Control and
- 285 Prevention.

286	Potential conflicts of interests					
287	All authors report no potential conflict.					
288						
289	Refer	ences				
290	1.	Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. 2003.				
291		Global illness and deaths caused by rotavirus disease in children. Emerg Infect				
292		Dis 9: 565-572.				
293	2.	Patel MM, Hall AJ, Vinje J, Parashar UD. 2009. Noroviruses: a				
294		comprehensive review. J Clin Virol 44: 1-8.				
295	3.	Payne DC, Boom JA, Staat MA, Edwards KM, Szilagyi PG, Klein EJ,				
296		Selvarangan R, Azimi PH, Harrison C, Moffatt M, Johnston SH, Sahni LC,				
297		Baker CJ, Rench MA, Donauer S, McNeal M, Chappell J, Weinberg GA,				
298		Tasslimi A, Tate JE, Wikswo M, Curns AT, Sulemana I,				
299		Mijatovic-Rustempasic S, Esona MD, Bowen MD, Gentsch JR, Parashar				
300		UD. 2013. Effectiveness of pentavalent and monovalent rotavirus vaccines in				
301		concurrent use among US children <5 years of age, 2009-2011. Clin Infect Dis				

57:13-20.

303	4.	do Carmo GM, Yen C, Cortes J, Siqueira AA, de Oliveira WK,
304		Cortez-Escalante JJ, Lopman B, Flannery B, de Oliveira LH, Carmo EH,
305		Patel M. 2011. Decline in diarrhea mortality and admissions after routine
306		childhood rotavirus immunization in Brazil: a time-series analysis. PLoS Med
307		8: e1001024.
308	5.	Paternina-Caicedo A, De la Hoz-Restrepo F, Alvis-Guzman N. 2015.
309		Epidemiological and Economic Impact of Monovalent and Pentavalent
310		Rotavirus Vaccines in Low and Middle Income Countries: A Cost-effectiveness
311		Modeling Analysis. Pediatr Infect Dis J 34:e176-184.
312	6.	Payne DC, Vinje J, Szilagyi PG, Edwards KM, Staat MA, Weinberg GA,
313		Hall CB, Chappell J, Bernstein DI, Curns AT, Wikswo M, Shirley SH, Hall
314		AJ, Lopman B, Parashar UD. 2013. Norovirus and medically attended
315		gastroenteritis in U.S. children. N Engl J Med 368:1121-1130.
316	7.	Hemming M, Rasanen S, Huhti L, Paloniemi M, Salminen M, Vesikari T.
317		2013. Major reduction of rotavirus, but not norovirus, gastroenteritis in children

318		seen in hospital after the introduction of RotaTeq vaccine into the National
319		Immunization Programme in Finland. Eur J Pediatr
320		doi:10.1007/s00431-013-1945-3.
321	8.	Pang XL, Zeng SQ, Honma S, Nakata S, Vesikari T. 2001. Effect of rotavirus
322		vaccine on Sapporo virus gastroenteritis in Finnish infants. Pediatr Infect Dis J
323		20: 295-300.
324	9.	Becker-Dreps S, Bucardo F, Vilchez S, Zambrana LE, Liu L, Weber DJ,
325		Pena R, Barclay L, Vinje J, Hudgens MG, Nordgren J, Svensson L, Morgan
326		DR, Espinoza F, Paniagua M. 2014. Etiology of Childhood Diarrhea After
327		Rotavirus Vaccine Introduction: A Prospective, Population-based Study in
328		Nicaragua. Pediatr Infect Dis J 33:1156-1163.
329	10.	Svraka S, Vennema H, van der Veer B, Hedlund KO, Thorhagen M,
330		Siebenga J, Duizer E, Koopmans M. 2010. Epidemiology and genotype
331		analysis of emerging sapovirus-associated infections across Europe. J Clin
332		Microbiol 48: 2191-2198.
333	11.	Pang XL, Lee BE, Tyrrell GJ, Preiksaitis JK. 2008. Epidemiology and

334		genotype analysis of sapovirus associated with gastroenteritis outbreaks in
335		Alberta, Canada: 2004-2007. J Infect Dis 199: 547-551.
336	12.	Oka T, Wang Q, Katayama K, Saif LJ. 2015. Comprehensive review of
337		human sapoviruses. Clin Microbiol Rev 28:32-53.
338	13.	Iritani N, Kaida A, Abe N, Kubo H, Sekiguchi J, Yamamoto SP, Goto K,
339		Tanaka T, Noda M. 2014. Detection and genetic characterization of human
340		enteric viruses in oyster-associated gastroenteritis outbreaks between 2001 and
341		2012 in Osaka City, Japan. J Med Virol 86:2019-2025.
342	14.	Wu FT, Oka T, Takeda N, Katayama K, Hansman GS, Muo CH, Liang SY,
343		Hung CH, Dah-Shyong Jiang D, Hsin Chang J, Yang JY, Wu HS, Yang CF.
344		2008. Acute gastroenteritis caused by GI/2 sapovirus, Taiwan, 2007. Emerg
345		Infect Dis 14: 1169-1171.
346	15.	Lee LE, Cebelinski EA, Fuller C, Keene WE, Smith K, Vinje J, Besser JM.
347		2012. Sapovirus outbreaks in long-term care facilities, Oregon and Minnesota,
348		USA, 2002-2009. Emerg Infect Dis 18:873-876.
349	16.	Liu X, Yamamoto D, Saito M, Imagawa T, Ablola A, Tandoc AO, 3rd,

350		Segubre-Mercado E, Lupisan SP, Okamoto M, Furuse Y, Saito M, Oshitani
351		H. 2015. Molecular detection and characterization of sapovirus in hospitalized
352		children with acute gastroenteritis in the Philippines. J Clin Virol 68:83-88.
353	17.	Rockx B, De Wit M, Vennema H, Vinje J, De Bruin E, Van Duynhoven Y,
354		Koopmans M. 2002. Natural history of human calicivirus infection: a
355		prospective cohort study. Clin Infect Dis 35: 246-253.
356	18.	Iwakiri A, Ganmyo H, Yamamoto S, Otao K, Mikasa M, Kizoe S, Katayama
357		K, Wakita T, Takeda N, Oka T. 2009. Quantitative analysis of fecal sapovirus
358		shedding: identification of nucleotide substitutions in the capsid protein during
359		prolonged excretion. Arch Virol 154:689-693.
360	19.	Amar CF, East CL, Gray J, Iturriza-Gomara M, Maclure EA, McLauchlin
361		J. 2007. Detection by PCR of eight groups of enteric pathogens in 4,627 faecal
362		samples: re-examination of the English case-control Infectious Intestinal Disease
363		Study (1993-1996). Eur J Clin Microbiol Infect Dis 26:311-323.
364	20.	de Wit MA, Koopmans MP, Kortbeek LM, Wannet WJ, Vinje J, van
365		Leusden F, Bartelds AI, van Duynhoven YT. 2001. Sensor, a population-based

366		cohort study on gastroenteritis in the Netherlands: incidence and etiology. Am J
367		Epidemiol 154: 666-674.
368	21.	Chhabra P, Payne DC, Szilagyi PG, Edwards KM, Staat MA, Shirley SH,
369		Wikswo M, Nix WA, Lu X, Parashar UD, Vinje J. 2013. Etiology of viral
370		gastroenteritis in children <5 years of age in the United States, 2008-2009. J
371		Infect Dis 208: 790-800.
372	22.	Saito M, Goel-Apaza S, Espetia S, Velasquez D, Cabrera L, Loli S, Crabtree
373		JE, Black RE, Kosek M, Checkley W, Zimic M, Bern C, Cama V, Gilman
374		RH, Norovirus Working Group in Peru. 2014. Multiple norovirus infections
375		in a birth cohort in a Peruvian Periurban community. Clin Infect Dis
376		58: 483-491.
377	23.	Oka T, Katayama K, Hansman GS, Kageyama T, Ogawa S, Wu FT, White
378		PA, Takeda N. 2006. Detection of human sapovirus by real-time reverse
379		transcription-polymerase chain reaction. J Med Virol 78:1347-1353.
380	24.	Okada M, Yamashita Y, Oseto M, Shinozaki K. 2006. The detection of human
381		sapoviruses with universal and genogroup-specific primers. Arch Virol

151:2503-2509.

383	25.	Tamura	К,	Peterson	D,	Peterson	N,	Stecher	G,	Nei	М,	Kumar	S.	2011	L.
-----	-----	--------	----	----------	----	----------	----	---------	----	-----	----	-------	----	------	----

- 384 MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum
- 385 Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.
- 386 Molecular Biology and Evolution **28:**2731-2739.

387 26. Oka T, Mori K, Iritani N, Harada S, Ueki Y, Iizuka S, Mise K, Murakami K,

Wakita T, Katayama K. 2012. Human sapovirus classification based on
complete capsid nucleotide sequences. Arch Virol 157:349-352.

- 390 27. Blackwelder WC, Biswas K, Wu Y, Kotloff KL, Farag TH, Nasrin D,
- 391 Graubard BI, Sommerfelt H, Levine MM. 2012. Statistical methods in the
 392 Global Enteric Multicenter Study (GEMS). Clin Infect Dis 55 Suppl
- **4:**S246-253.
- 394 28. Johnsen CK, Midgley S, Bottiger B. 2009. Genetic diversity of sapovirus
- infections in Danish children 2005-2007. J Clin Virol **46:**265-269.
- 396 29. Harada S, Okada M, Yahiro S, Nishimura K, Matsuo S, Miyasaka J,
- 397 Nakashima R, Shimada Y, Ueno T, Ikezawa S, Shinozaki K, Katayama K,

398		Wakita T, Takeda N, Oka T. 2009. Surveillance of pathogens in outpatients
399		with gastroenteritis and characterization of sapovirus strains between 2002 and
400		2007 in Kumamoto Prefecture, Japan. J Med Virol 81:1117-1127.
401	30.	Matussek A, Dienus O, Djeneba O, Simpore J, Nitiema L, Nordgren J. 2015.
402		Molecular characterization and genetic susceptibility of sapovirus in children
403		with diarrhea in Burkina Faso. Infect Genet Evol 32: 396-400.
404	31.	Iritani N, Yamamoto SP, Abe N, Kubo H, Oka T, Kaida A. 2015. Epidemics
405		of GI.2 sapovirus in gastroenteritis outbreaks during 2012-2013 in Osaka City,
406		Japan. J Med Virol doi:10.1002/jmv.24451.
407	32.	Tam CC, O'Brien SJ, Tompkins DS, Bolton FJ, Berry L, Dodds J,
408		Choudhury D, Halstead F, Iturriza-Gomara M, Mather K, Rait G, Ridge A,
409		Rodrigues LC, Wain J, Wood B, Gray JJ. 2012. Changes in causes of acute
410		gastroenteritis in the United Kingdom over 15 years: microbiologic findings
411		from 2 prospective, population-based studies of infectious intestinal disease.
412		Clin Infect Dis 54: 1275-1286.
413	33.	Chan MC, Sung JJ, Lam RK, Chan PK, Lai RW, Leung WK. 2006.

414		Sapovirus detection by quantitative real-time RT-PCR in clinical stool
415		specimens. J Virol Methods 134:146-153.
416	34.	Marques Mendanha de Oliveira D, Souza M, Souza Fiaccadori F, Cesar
417		Pereira Santos H, das Dores de Paula Cardoso D. 2014. Monitoring of
418		Calicivirus among day-care children: evidence of asymptomatic viral excretion
419		and first report of GI.7 Norovirus and GI.3 Sapovirus in Brazil. J Med Virol
420		86: 1569-1575.
421	35.	Pang XL, Preiksaitis JK, Lee BE. 2013. Enhanced enteric virus detection in
422		sporadic gastroenteritis using a multi-target real-time PCR panel: A one-year
423		study. J Med Virol doi:10.1002/jmv.23851.
424	36.	Thongprachum A, Takanashi S, Kalesaran AFC, Okitsu S, Mizuguchi M,
425		Hayakawa S, Ushijima H. 2015. Four-Year Study of Viruses That Cause
426		Diarrhea in Japanese Pediatric Outpatients. Journal of Medical Virology
427		87: 1141-1148.
428	37.	Makita K, Hayakawa Y, Okame M, Homma K, Phan TG, Okitsu S,
429		Ushijima H. 2007. First detection of IgA against norovirus in breast milk. Clin

430 Lab **53:**125-128.

431	38.	Vinje J. 2015	. Advances in	n laboratory	methods	for	detection	and	typing	of
432		norovirus. J Cl	in Microbiol 5	3: 373-381.						

- 433 39. Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, Green K,
- 434 Martella V, Katayama K, Koopmans M. 2013. Proposal for a unified
- 435 norovirus nomenclature and genotyping. Arch Virol **158:**2059-2068.
- 436 40. Harada S, Oka T, Tokuoka E, Kiyota N, Nishimura K, Shimada Y, Ueno T,
- 437 Ikezawa S, Wakita T, Wang Q, Saif LJ, Katayama K. 2012. A confirmation
- 438 of sapovirus re-infection gastroenteritis cases with different genogroups and
- 439 genetic shifts in the evolving sapovirus genotypes, 2002-2011. Arch Virol
- 440 **157:**1999-2003.
- 441 41. Lauritsen KT, Hansen MS, Johnsen CK, Jungersen G, Bottiger B. 2015.
- 442 Repeated examination of natural sapovirus infections in pig litters raised under
- 443 experimental conditions. Acta Vet Scand **57:**60.
- 444 42. Hansman GS, Oka T, Sakon N, Takeda N. 2007. Antigenic diversity of human
 445 sapoviruses. Emerg Infect Dis 13:1519-1525.

446	43.	Farkas T, Deng X, Ruiz-Palacios G, Morrow A, Jiang X. 2006. Development
447		of an enzyme immunoassay for detection of sapovirus-specific antibodies and its
448		application in a study of seroprevalence in children. J Clin Microbiol
449		44: 3674-3679.
450	44.	Jiang X, Cubitt WD, Berke T, Zhong W, Dai X, Nakata S, Pickering LK,
451		Matson DO. 1997. Sapporo-like human caliciviruses are genetically and
452		antigenically diverse. Arch Virol 142:1813-1827.
453		

454 **Figure legends**

455 Figure 1. Prevalence of sapovirus in diarrheal and non-diarrheal stool samples by

- 456 age in the case-control study in Peru.
- The y-axis indicates the percentage of stools in which sapovirus was detected. The x-axis shows age groups of infants with stools. The black bars and grey bars indicate diarrheal and non-diarrheal stools. Error bars represent 95% confidence intervals. One diarrheal sample was available in the age group of 18–23.
- 461 Figure 2. Phylogenetic analysis of sapovirus based on partial VP1 region (606nt,
- 462 **5236–5841 nt corresponding of Manchester X86560**) The phylogenetic tree was
- 463 inferred using the maximum likelihood method (Kimura 2-parameter model) using
- 464 MEGA5. The tree was drawn to scale, with branch lengths in the units of the number of
- 465 base substitutions per site. The percentage of trees (\geq 70%) in which the associated taxa
- 466 clustered together is shown next to the branches. Peru strains are marked with filled
- 467 triangles and are named as country-tested number-diarrheal or non-diarrheal.

468 Figure 3. Phylogenetic analysis of full VP1 amino acid sequences of sapovirus. The

469 phylogenetic tree was inferred using the maximum likelihood method (General Reverse

470	Transcriptase + Freq. model) using MEGA5. The tree was drawn to scale, with branch
471	lengths measured in the number of substitutions per site. The VP1 obtained in this study
472	is marked with a filled triangle.
473	
474	
475	

476 Table 1. Characteristics of repeated infections of sapovirus observed in eight children in the birth cohort study in Peru

Infant	Sampling	Age	Ct value	sapovirus	Accession	0	Duration of
ID	date	(month)		Genotype	Number	Symptoms	symptoms (day)
PX046	13-Jul-08	13	16.0	GI.6	KT276525	Diarrhea, vomiting	2
	16-Nov-08	17	15.5	GI.1	KT672521	Diarrhea	3
PX152	19-Jan-09	16	26.8	GI.6	KT276526	Diarrhea	5
	10-Feb-09	16	31.9	GI.7	KT276536	Diarrhea,vomiting	6
PX198	12-May-08	4	23.5	GII.1	KU886207	none	0
	15-Dec-09	23	31.4	GII.2	KT276555	Diarrhea	2
PX080	25-Aug-08	12	21.5	GIV	KT276558	Diarrhea, vomiting	2

	25-May-09	21	21.1	GII.2	KT276554	Diarrhea	2
PX135	17-Mar-08	6	34.4	GIV	KU886206*	Diarrhea, fever	12
	19-Jun-09	21	15.9	GV.1	KT276538	Diarrhea, vomiting	2
PX159	19-Jun-08	9	16	GII.4	KT276549	Diarrhea, vomiting	5
	27-Jan-09	16	15.7	GI.1	KT276520	Diarrhea	4
PX212	20-Apr-09	15	18.9	GI.1	KT276522	Diarrhea, fever	3
	30-Oct-09	21	23.9	GII.8	KT276546	Diarrhea	3
PX287	18-Jun-09	8	25.8	GIV	KT276557	Diarrhea, vomiting	6
	12-Oct-09	11	19.4	GI.1	KT276519	Diarrhea, vomiting	3

478 * This sequence has 450 bp and was not shown in Figure 2