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Forcing-dependent dynamics and emergence
of helicity in rotating turbulence

Vassilios Dallas† and Steven M. Tobias

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

The effects of large scale mechanical forcing on the dynamics of rotating turbulent flows
are studied by means of direct numerical simulations, varying systematically the nature of
the mechanical force in time. We find that the statistically stationary solutions of these
flows depend on the nature of the forcing mechanism. Rapidly enough rotating flows
with a forcing that has a persistent direction relatively to the axis of rotation bifurcate
from a non-helical state to a helical state despite the fact that the forcing is non-helical.
We demonstrate that the nature of the mechanical force in time and the emergence of
helicity have direct implications on the cascade dynamics of these flows, determining the
anisotropy in the flow, the energy condensation at large scales and the power-law energy
spectra that are consistent with previous findings and phenomenologies under strong and
weak turbulence.

Key words:

1. Introduction

The effects of the Coriolis force on a turbulent fluid flow become important at suffi-
ciently high rotation rates altering its dynamics (Tritton 1988). Experiments and simu-
lations reveal that fast rotation renders the flow quasi-two-dimensional (quasi-2D), since
fast rotation suppresses the velocity gradients along the axis of rotation as shown by the
Taylor-Proudman theorem (Proudman 1916; Taylor 1917). Under such conditions, the
flow sustains inertial waves whose frequency is proportional to the rotation rate (Lighthill
1965; Greenspan 1968).

The interplay between inertial waves and eddies in rotating fluids makes the problem of
rotating turbulence very rich. Many experimental studies at a wide range of parameters
have elucidated the dynamics of such flows (Hopfinger & Heijst 1993; Ruppert-Felsot
et al. 2005; Davidson et al. 2006; Bewley et al. 2007; van Bokhoven et al. 2009; Moisy
et al. 2011). Many numerical studies have also been carried out on rotating turbulence.
The regime for which both the turbulence is fully developed (large Reynolds numbers)
and the flow is fast rotating (small Rossby numbers) puts strong restrictions on the
scale separation requirements in simulations. Therefore, most of the early numerical
investigations were focused on decaying rotating turbulence (Bartello et al. 1994; Hossain
1994; Cambon et al. 1997; Morinishi et al. 2001; Teitelbaum & Mininni 2011; Yoshimatsu
et al. 2011). More recent studies have been performed on forced rotating turbulence
both at large (Yeung & Zhou 1998; Mininni & Pouquet 2010; Mininni et al. 2012) and
small scales; the latter to study the dynamics of the inverse cascade (Smith et al. 1996;
Pouquet et al. 2013; Deusebio et al. 2014). The computational costs prevent in general
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the exhaustive coverage of the parameters space with most numerical studies reaching
either large Reynolds numbers and moderate Rossby numbers or moderate Reynolds
numbers and small Rossby numbers. Note that these simulations, with the exception of
a very recent study which reached steady states and covered extensively a fairly large
portion of the parameters space (Alexakis 2015), have not reached statistically stationary
solutions because very long integration times are required.

Although these studies were numerous and an adequate portion of the parameters space
was covered there are still disparate results in different cases — for example, different
power law spectra with E(k) ∝ k−5/3, k−2 and k−5/2, supported theoretically by strong
and weak-wave turbulence phenomenologies (Kolmogorov 1941; Zhou 1995; Galtier 2003;
Pouquet & Mininni 2010). Moreover, a recent investigation showed sensitivity to forcing
in that different results for the large scales of a flow that was forced at intermediate scales
(Sen et al. 2012) when energy was injected exclusively to the quasi-2D component of the
flow and when it was injected solely to the inertial waves. The injection of helicity into
the flow has also shown alterations on the behaviour of the cascade (Pouquet & Mininni
2010). Forcing dependent dynamics have been observed in various other systems such
as in two-dimensional (2D) turbulence (Bracco & McWilliams 2010; Boffetta & Ecke
2012), in beta-plane turbulence (Maltrud & Vallis 1991) and in magnetohydrodynamic
turbulence (Dallas & Alexakis 2015).

The present work focuses on the effects of the mechanical force on the dynamics of
rotating flows by means of numerical simulations, varying systematically the memory
time scale of the mechanical force (i.e. the time scale of which the phases of the force are
randomised). The behaviour of different mechanical forcing mechanisms on the flows is
also considered for different rotation rates. To the best of the authors’ knowledge this is
the first study of forced rotating flows in the steady state regime where the effects of a
large scale external force on the dynamics are studied extensively.

The paper is structured as follows. All the necessary details of the formulation of our
direct numerical simulations (DNS) of forced rotating turbulence are provided in Sec. 2.
Section 3 analyses the dynamics of the flows with different memory time scales of the
forcing mechanism for a given Rossby number. Here, we also focus on the spontaneous
emergence of helicity in our flows and its influence on the anisotropy and on the spectral
dynamics. In Sec. 4 we describe the Rossby number dependence on flows with different
type of forcing mechanisms and we justify the spontaneous mirror-symmetry breaking in
our flows even though net helicity is not injected directly. Finally, in Sec. 5, we conclude
by summarising our findings and we discuss the implications of our work.

2. Numerical Simulations

In this study, we consider the three-dimensional (3D) incompressible Navier-Stokes
equations in a rotating frame of reference

∂tu + ω × u + 2Ω × u = −∇P + ν∇
2u + f , (2.1)

where u is the velocity field, ω = ∇ × u is the vorticity, P is the pressure, ν is the
kinematic viscosity, and f is an external mechanical force. In a Cartesian domain, we
choose the rotation axis to be in the z direction with Ω = Ωez, where Ω is the rotation
frequency. In the ideal case of ν = 0 and f = 0, Eq. (2.1) conserves the energy E = 1

2 〈|u|
2〉

(where |·| stands for the L2-norm) and the helicity H = 〈u · ω〉 with the angular brackets
denoting a spatial average unless indicated otherwise.
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τm/τNL 0.5 0.5 0.5 0.5 0.5 0.5 4.0 32.0 128.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Rof 0.01 0.05 0.1 0.1 0.2 0.5 0.1 0.1 0.1 0.01 0.05 0.1 0.1 0.2 0.33 0.5
Ref 333 333 333 714 333 333 333 333 333 333 333 333 714 333 333 333
Ω 50.0 10.0 5.0 5.0 2.5 1.0 5.0 5.0 5.0 50.0 10.0 5.0 5.0 1.0 1.5 1.0
ν (×10−3) 3.0 3.0 3.0 1.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.4 3.0 3.0 3.0
N 256 256 256 512 256 256 256 256 256 256 256 256 512 256 256 256

Table 1: Numerical control parameters of the DNS.

The external mechanical forcing in Eq. (2.1) is given by

f = f0

∑

kf




sin(kfy + φy) + sin(kfz + φz)
sin(kfx + φx) + sin(kfz + φz)
sin(kfx + φx) + sin(kfy + φy)



 , (2.2)

where φx, φy, φz are phases, which are randomised every τm, the so called memory
time scale, which is one of the control parameters in our study. The forcing is applied at
wavenumber amplitudes |k| = kf = 2, 3 and 4, where kf denotes the forcing wavenumber.
The random phases are specific to a kf mode and the random change of phases is done
instantaneously for all phases. In the limit of τm → 0 we have essentially a random delta
correlated in time forcing with the phases randomised at each time step, whereas when
we choose τm = ∞ we randomise the phases only at t = 0 in the duration of the runs
and hence we apply a time-independent forcing. For all the runs the forcing amplitude is
normalised such that f/|f | = f0 = 1. Note that our forcing mechanism has f ·∇×f 6= 0
pointwise in space but it is non-helical on average 〈f · ∇ × f〉 = 0 unlike an ABC forcing
(Dombre et al. 1986) which is fully helical.

Now, if we write the wavenumbers in the 3D Fourier space using cylindrical coordinates,

we have k = (k⊥,k‖), with k⊥ =
√

k2
x + k2

y and k‖ = |kz|. Then, the 2D modes (i.e.

independent of z) in Fourier space can be denoted as u(k⊥) and the 3D or wave modes
as u(k). Then, in this setting the time-independent forcing (τm = ∞) excites two 2D
modes in the kx and ky axis of the Fourier space and one 3D mode in the kz axis in the
Fourier shell for each wavenumber kf . The random-in-time forcing (τm → 0) excites also
the same modes but since the phases are random, this mechanism is isotropic in contrast
to the time-independent forcing. By isotropic, we mean that the forcing vector of the
driving mechanism with the short memory time scale samples all phase space assuming
ergodicity.

The relevant dimensionless control parameters of our problem are defined based on
the forcing amplitude. So, the Reynolds number is given by Ref = U/(kminν) and the
Rossby number by Rof = Ukmin/(2Ω) where U = (f0/kmin)1/2. Using these definitions
Re2

f is essentially the Grashof number and Rof the ratio of the rotation period τw ∝

Ω−1 to the eddy turnover time τNL = (Ukmin)−1. Note that Ref and Rof are control
parameters that they do not require knowledge of the solution to be evaluated and are
useful for comparison with body-forced numerical simulations or experiments. All the
control parameters of our DNS are listed in Table 1.

Using the pseudo-spectral method, we numerically integrate Eq. (2.1) in a periodic box
of size 2π, satisfying the incompressibility condition ∇ · u = 0. The time derivatives are
estimated using a third-order Runge-Kutta scheme. Aliasing errors are removed using
the 2/3 dealiasing rule and as a result the minimum and maximum wavenumbers are
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Figure 1: (Color online) Time series of (a) the energy E for the flows with different
memory time scales τm of the forcing and of (b) the rates of energy dissipation ǫ and
injection 〈u · f〉 for the flows with τm/τNL = 0.5 and ∞ at Rossby number Rof = 0.1
and Reynolds number Ref = 333

kmin = 1 and kmax = N/3, respectively, where N is the number of grid points in each
Cartesian coordinate. For more details on the numerical code see (Gómez et al. 2005).

3. Forcing-dependent dynamics

3.1. Time evolution

Figure 1a shows the temporal evolution of the energy E for flows with Rof = 0.1 and
different memory time scale τm of the forcing. As τm increases, we observe a gradual
increase of the amplitude of the energy up to an order of magnitude. The time-series
for τm/τNL > 4 are characterised by large signal variations, which require extremely
long time-integrations restricting our runs to moderate Reynolds numbers. Note that
even for low τm a steady state is reached after a transient that lasts for about 50 to
100τNL turnover times indicating how expensive computationally is to reach a steady
state regime in rotating flows forced at large scales.

The temporal evolution of the energy dissipation rate ǫ = ν〈|ω|2〉 and the energy
injection rate 〈u · f〉 are presented in Fig. 1b. For clear illustration purposes we choose
to plot only the two extreme cases of the flows with the highly random-in-time forcing
(τm/τNL = 0.5) and the time-independent forcing (τm/τNL = ∞) at Rof = 0.1. At
relatively early times the two flows reach a steady state (see Fig. 1a) and therefore the
balance ǫ = 〈u · f〉 is satisfied with both flows having the same rates of energy injection
and dissipation. However, after a very long time period (∼ 600τNL turnover times) the
flow with the time-independent forcing deviates eventually to a new statistically steady
state. This happens when u becomes correlated with f and then the flow adjusts its
dissipation rate such that a new steady state is achieved.

The adjustment of the dissipation rate by the flow owing to the increase of the correla-
tion between the external mechanical force and the velocity field explains why the energy
increases as we increase the memory time scale of the forcing. This is a very interesting
property of rotating flows from a practical point of view if one wants to minimise or max-
imise the energy dissipation rate in a potential application such as in turbomachinery.

We should point out here that the energy dissipation rate remains small for the flow
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Figure 2: (Color online) (a) Time series of relative helicity ρH and (b) Probability Density
Function (PDF) of the absolute value of ρH for the flows with different forcing memory
time scale at Rossby number Rof = 0.1 and Reynolds number Ref = 333

with τm/τNL = 0.5 throughout the duration of the simulation for two reasons. The
first reason is due to the short memory timescale of the forcing that keeps the 〈u · f〉
correlation small and the second reason is due to the low Rossby number, resulting in a
weak turbulent cascade as we show later on.

3.2. The role of helicity

Helicity is common in real flows and it can be created, for example, in planetary atmo-
spheres in the presence of rotation and stratification (Moffatt 1978; Tobias 2009; Marino
et al. 2013). In homogenenous non-rotating turbulence it is expected that the helicity
spectrum cannot develop if it is initially zero (André & Lesieur 1977) or if an external
mechanism does not inject net helicity (Dallas et al. 2015). In our runs zero net helicity is
injected into the flow. Nevertheless, for a given rotation rate (i.e. Rof = 0.1) we observe
that the relative helicity ρH = H/(|u||ω|) increases as the memory time scale of the
forcing increases (see Fig. 2).

It is apparent from Fig. 2 that the mirror-symmetry breaking depends on the value
of τm. Figure 2a shows ρH to be almost zero at early times for all the flows and as τm

increases the mirror-symmetry breaks at later times only for long enough τm. We observe
that helicity emerges in the flow as soon as τm becomes of the order of the eddy turnover
time, i.e. τm/τNL ∼ O(1). To analyse further this behaviour of ρH we plot the Probability
Density Function (PDF) of the time series of the absolute value of relative helicity in Fig.
2b. This plot shows an increase in the mean value of |ρH | and also a broadening of the
tails of the PDFs for longer memory time scales. So, unlike in homogeneous turbulence,
helicity can be created in rotating flows by an external force with a sufficiently long
memory time scale, even though net helicity is not injected directly into the flow.

To determine whether the breaking of mirror-symmetry, that distinguishes flows with
highly random-in-time and time-independent forcings, remains at higher Reynolds num-
bers we carried out simulations for the two extreme cases of τm/τNL = 0.5 and ∞ at
Ref = 714 and Rof = 0.1. Our numerical simulations confirm the persistence of this be-
haviour at higher Reynolds numbers. We therefore analyse these higher Reynolds number
runs in order to gain further insight on the effects of helicity on the flow.

Visualisations of the relative helicity of the flows with Ref = 714 are presented in Figs.
3a and 3b with the value of ρH = −0.018 and 0.45 for τm/τNL = 0.5 and ∞, respectively.
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(a) (b)

Figure 3: (Color online) Visualisations of the relative helicity ρH for the flows at Rossby
number Rof = 0.1 and Reynolds number Ref = 714 with (a) τm/τNL = 0.5, ρH =
−0.018 and (b) τm/τNL = ∞, ρH = 0.45

The red and blue colour in Fig. 3 indicate right-hand (positive helicity) and left-hand
(negative helicity) circularly polarized helical waves, respectively. An instructive way to
explain this further is to decompose the velocity field into circularly polarised helical
waves (Constantin & Majda 1988; Waleffe 1992)

u(x, t) = h±(k)ei(k·x−ω±t), (3.1)

where ik, h+ and h− are the linearly independent eigenvectors of the curl operator, i.e.
ik × h± = ±|k|h±. These complex eigenvectors are orthogonal to each other and are
fully helical. So, now û(k) can be expressed as a linear combination of the eigenvectors
h+ and h− only as follows

û(k, t) = u+(k, t)h+(k) + u−(k, t)h−(k) (3.2)

since k ·û(k) = 0. Then, the helicity can be separated into modes of positive and negative
helicity, viz.

H =
∑

k

û(k) · ω̂∗(k)

=
∑

k

k(|u+(k)|2 − |u−(k)|2)

= k(E+ − E−) = H+ − H−, (3.3)

where ∗ denotes the complex-conjugate.
The nature of the forcing is clearly imprinted on the flow structure in Fig. 3. The

flow with the highly random-in-time forcing (see Fig. 3a) gives a quasi-2D flow with two
large columnar vortices, typical at low Rossby numbers due to the Taylor-Proudman
theorem. These two vortices are governed by helical waves of opposite polarity. On the
other hand, the flow with the time-independent forcing is characterised by helical waves
of opposite polarity that travel within the flow breaking the quasi-2D behaviour at small
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Figure 4: (Color online) The two-dimensional energy spectrum E2D(k⊥, k‖) for the flows
at Rossby number Rof = 0.1 and Reynolds number Ref = 714 with (a) τm/τNL = 0.5,
ρH = −0.018 and (b) τm/τNL = ∞, ρH = 0.45

and intermediate scales that is imposed by rotation (see Fig. 3b). Note that the two
large scale vortices are still present but this time they have the same sign of helicity on
average. Similar effects of helicity have also been observed on an elder study of decaying
rotating turbulence (Morinishi et al. 2001).

In order to quantify the level of anisotropy of these two runs we consider the 2D energy
spectrum which is defined as

E2D(k⊥, k‖) =
∑

k‖6|k·ez|<k‖+1

k⊥6|k×ez|<k⊥+1

|ûk|
2. (3.4)

The sum is restricted here at energy in cylinders of radius k⊥ and energy in planes
k‖. Figures 4a and 4b show the 2D energy spectrum for the flows with τm/τNL = 0.5
and ∞, respectively. The contours of the 2D energy spectrum for an isotropic flow is
represented by concentric circles centered at the origin of the axes. Any deviation from
the circular pattern indicates the level of anisotropy in the flow. By comparing the two
contour plots of E2D, it becomes clear that in Fig. 4b the intermediate and small scales
are closer to isotropy, implying that the flow with the time-independent forcing is overall
less anisotropic than the flow with the highly random-in-time forcing. This observation
is in agreement with the visualisation of Fig. 3, which prompt us to postulate that the
helicity plays a central role on the suppression of anisotropy in the flow.

3.3. Spectral behaviour

In this section we present the spectra of the energy E(k) and the energy flux ΠE(k). The
energy spectrum was spherically averaged using the following expression

E(k) =
∑

k6|k|<k+1

|ûk|
2 (3.5)

and the spectrum of the energy flux was obtained as

ΠE(k) =

K∑

k=1

∑

k6|k|<k+1

û∗(k) · ̂(u × ω)(k). (3.6)

The energy flux is a measure that illustrates the direction of the energy cascades. These
spectra were time-averaged after the flows have reached a steady state solution. Note
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Figure 5: (Color online) (a) Energy spectra E(k) compensated by k5/2 and (b) the energy
flux spectra ΠE(k) normalised with the dissipation rate ǫE for flows with different forcing
memory time scale at Rossby number Rof = 0.1 and Reynolds number Ref = 333

that the flow with the time-independent forcing (τm/τNL = ∞) was time-averaged only
after ∼ 800τNL turnover times, when the new steady state was reached (see Fig. 1b).

Note that we did not observe any differences to the scalings of the spectra when
averaging over spheres and over cylinders. This has also been shown clearly by Mininni
et al. (2009), who performed simulations at low Rossby numbers and of similar resolutions
to us. So, the scalings of the spectra that we present are also valid for energy spectra as
a function of k⊥. However, significant differences in the scalings are observed in the k‖
direction.

The effects of the memory time scale of the forcing is also apparent on the spectral
dynamics of our flows. Figure 5a shows the energy spectra of the flows with different
memory time scales of the forcing compensated by k5/2. The spectra of these flows obey
different power laws which clearly depend on the memory time scale of the forcing.
The runs that are forced with the highly random-in-time forcing seem to have a k−5/2

scaling. As τm increases the spectra start to deviate gradually from the k−5/2 scaling
towards a k−2 and finally reach a k−5/3 scaling for the flow with the time-independent
forcing. The k−5/3 energy spectrum can be interpreted from the fact that the intermediate
and small scales of the flow are closer to isotropy (see Figs. 4b and 3b) and hence we
expect the Kolmogorov phenomenology to be valid in this case. All the exponents that
we observe here could be related to the various phenomenologies on strong and weak-
wave turbulence in the literature, where the interplay between τNL and the time scale
of the inertial waves τw ∝ Ω−1 is central to obtain the different energy spectra. These
spectral exponents have also been observed in other studies of forced rotating flows
(Yeung & Zhou 1998; Mininni & Pouquet 2010; Alexakis 2015). Owing to the moderate
resolution of these simulations, the statements about the exact spectral exponents are
qualitative. In any case, our results show clearly a dependence of the spectra on the nature
of the forcing in rotating turbulence. Simulations integrated for extremely long times with
higher Reynolds numbers but also lower Rossby numbers, falling in the same dynamical
regime of the two-dimensional parameter space, are necessary to verify whether our
results imply a lack of universality in these flows.

The corresponding spectra for the energy flux ΠE(k) normalised by the energy dissipa-
tion rate ǫE = 2ν

∑
k k2E(k) are shown in Fig. 5b. The positive flux in this plot indicates
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a forward cascade while the negative flux indicates a transfer of energy from the small to
the large scales of the flow. In the case of negative flux we do not talk about a cascade
because we do not have enough scale separation between the forcing scale and the box
size. As the memory time scale of the forcing increases, the forward cascade becomes
stronger. On the other hand, the flux of energy towards the large scales increases as the
forcing becomes more random-in-time with the flow reaching a quasi-2D state. These
observations are in line with the visualisations of Fig. 3.

We already saw that, as the forcing becomes less time-dependent helicity increases
considerably in our flows, so these changes in the spectra can also be related to the
presence of strong net helicity in the flow. This is in agreement with prior studies that
have shown the influence of helicity on the energy spectrum by directly injecting helicity
into the flow (Mininni & Pouquet 2009, 2010). In contrast, helicity does not seem to have
any significant effect on the spectra in non-rotating, homogeneous and isotropic helical
turbulence (Dallas et al. 2015).

The fact that helicity is not a sign-definite quantity and because we do not inject
any net helicity, the sign of helicity in our flows undergoes changes in its inertial range.
Therefore, there is either no power-law or difficult to define one in our helicity spectra.
For this reason, we do not show any helicity spectra here. In the next section, we examine
the Rossby number dependence of the dynamics of the flows.

4. Rossby number dependence

4.1. Global behaviour

In the previous sections we saw that the dynamics depend on the nature of the forcing for
a given Rossby number. Here, we investigate the effects of the rotation rate on the flows,
focusing on the extreme cases of the forcing being highly random-in-time (τm/τNL =
0.5) and time-independent (τm/τNL = ∞) for fixed Ref = 333. Again here we restrict
ourselves to moderate Reynolds numbers because extremely long integration times for
the runs with time-independent forcing are inevitable.

For high Rossby number flows the effect of rotation is negligible and the energy is
expected to flow to scales smaller than the forcing scale. However, as Rossby number
is decreased and the flow tends to become quasi-2D, there is more and more energy
transferred to scales larger than the forcing scale due to an inverse cascade (Pouquet
et al. 2013).

We examine the energy and the relative helicity for runs with different Rossby numbers.
The triangles and circles denote runs forced with a time-independent forcing and random-
in-time forcing, respectively. As Rossby number is decreased we see that energy increases
as expected (see Fig. 6a). However, the rate of increase and the values of energy for high
enough rotation rates depend on the nature of the mechanical force. Note that the flow
with the time-independent forcing has much more energy at small Rossby numbers.

The relative helicity behaves also very differently for the two types of flows and this
is shown in Fig. 6b. The flow with the random-in-time forcing has zero net helicity for
all Rof . However, the flow with the time-independent forcing bifurcates to a state of
non-zero helicity for small enough Rossby numbers. The value of |ρH | seems to vary
discontinuously as Rof is decreased with the flow bifurcating to a helical state at the
critical Rocrit

f ≃ 0.2. Thus, the transition from the non-helical to the helical state is a
jump bifurcation. In summary, net helicity emerges in the flow only for small enough
Rof and long enough τm.

Helicity is a pseudoscalar quantity and H 6= 0 only if it is directly injected into the flow
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Figure 6: (Color online) Rossby number dependence of (a) energy and (b) absolute value
of relative helicity for flows with Reynolds number Ref = 333. The © and △ denote
runs forced with τm/τNL = 0.5 and τm/τNL = ∞, respectively.

(i.e. u · (∇ × f) 6= 0) by a helical mechanical force or if another pseudoscalar quantity
exists related to the pseudovector ∇ × f . In our work, we observe that net helicity
emerges in rapidly rotating flows with long enough memory time scale forcings only. So,
a pseudovector that relates the rotation vector with the forcing is Ω× (∇×f) and hence
the pseudoscalar quantity that will allow the generation of helicity in a rotating flow is

H ∝ u · Ω × (∇ × f). (4.1)

A similar expression was derived in a different way by Hide (1975) for a rapidly rotating
flow in geostrophic balance assuming that the non-linear term is negligible. Now, from
Eq. (4.1) we can deduce that no net helicity will be generated for a short memory time
scale forcing since 〈∇ × f〉t = 0 (with 〈.〉t denoting an average over time), assuming
isotropy and ergodicity. On the other hand, for a forcing with long enough memory time
scale 〈∇ × f〉t = g(x) 6= 0 and therefore H 6= 0 for long enough integration time scales
in agreement with our observations.

Moffatt (1970) suggested that a random superposition of inertial waves will exhibit a
lack of mirror-symmetry if and only if there is a mechanical excitation on a preferred
direction in the propagation of the waves with respect to the axis of rotation. Otherwise,
the random superposition of inertial waves in equal proportions would give zero net
helicity. Based on Eq. (4.1), we conjecture that such a mechanism is pertinent to our
flows where the angle ϕ between Ωez and ∇ × f is fixed at time t = 0 for a time-
independent forcing and hence such a forcing can add a preferred direction of propagation
to the inertial waves inducing the mirror-symmetry breaking in our flows. From the other
side, a highly random-in-time forcing can excite inertial waves on all directions in equal
proportions since ϕ is random in time and this is why the net helicity remains zero for
any value of Rof in this case.

4.2. Spectral behaviour

Here we analyse the energy spectra of the flows at different Rossby numbers. In Fig. 7a
we present the energy spectra E(k) compensated by k5/2 of the flows with the highly
random-in-time forcing. For Rof = 0.5 the energy spectrum is close to the Kolmogorov
k−5/3 scaling with the effects of the Coriolis force having no significant influence on the
dynamics of the flow. However, as the Rossby number decreases τw ∝ Ω−1 becomes



Forcing-dependent dynamics and emergence of helicity in rotating turbulence 11

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

E(k) ∝ k
−5/3

k

k5/
2 E

(k
)

 

 

Rof = 0.5
Rof = 0.2
Rof = 0.1
Rof = 0.05
Rof = 0.01

(a)

10
0

10
1

10
2

10
−1

10
0

10
1

10
2 E(k) ∝ k

−5/3

k

k5/
2 E

(k
)

 

 

Rof = 0.5
Rof = 0.2
Rof = 0.1
Rof = 0.05
Rof = 0.01

(b)

Figure 7: (Color online) Energy spectra E(k) compensated by k5/2 for the flows with (a)
τm/τNL = 0.5 and (b) τm/τNL = ∞ at different Rossby numbers and Reynolds number
Ref = 333

the dominant timescale and then the spectrum is changed to the weak-wave turbulence
prediction of E(k) ∝ k−5/2 .

Similar behaviour is observed for the spectra of the flows with the time-independent
forcing (see Fig. 7b) but with two different characteristics. The first is the significant
condensation of energy at large scales for small enough Rossby numbers in comparison
to the flows with the random-in-time forcing. The second is the transition from the
Kolmogorov-like regime with τE ≪ τw to the weak-wave turbulence regime with τw ≪ τE ,
which occurs at lower Rossby numbers, showing the dependence of this transition to the
nature of the mechanical force.

Here, we should point out that weak-wave turbulence theory arguments, which assume
uniform and isotropic forcing, predict a k−5/2 spectrum but they do not predict conden-
sation of energy at large scales due to an inverse cascade in unbounded domains. This is
in agreement with Fig. 7a where there is some energy condensation at large scales but not
significant in comparison to Fig. 7b. However, the energy condensation at large scales in
Fig. 7b suggests that weak-wave turbulence theory is not necessarily valid for the small
Rossby number flows with time-independent forcing even though E(k) ∝ k−5/2.

5. Discussion & conclusions

The dependence of the dynamics of rotating turbulence on the nature of the large
scale mechanical force is studied by means of numerical simulations to shed light on the
disparate results in the literature. For moderate Reynolds and low Rossby number flows
we systematically vary the memory time scale τm of the mechanical force. As τm increases
the forcing mechanism becomes less time-dependent and essentially less isotropic. We are
able to demonstrate that different steady state solutions will be reached if one is able to
integrate for long enough time scales, showing the dependence of the flows on the forcing
mechanism. When τm ∝ τNL we observe that mirror-symmetry spontaneously breaks
in the flow even though our mechanical force is non-helical. Moreover, as the forcing
mechanism becomes less time-dependent (long τm) the net helicity increases. This is also
true for the highest Reynolds number simulations that we carried out. We notice that
helical waves break the tendency of the small and intermediate scales of the flows with
the time-independent forcing to become 2D due to the imposed strong rotation. This
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makes the flow less anisotropic in contract to a flow with highly random-in-time forcing
where the net helicity appears to be negligible.

In addition, for moderate Ref and low Rof flows both the power laws for the energy
spectrum and the forward and inverse fluxes of energy depend strongly on the forcing
mechanism. Depending on the value of τm we obtain different scaling of the energy spec-
trum with E(k) ∝ k−5/3, k−2 and k−5/2 showing a clear dependence of the spectral
dynamics on the nature of the external driving force. Alexakis (2015) showed that no
matter how large the Reynolds number can be there is a small enough Rossby num-
ber such that the flow exhibits a particular behaviour (e.g. weakly rotating turbulence,
quasi-2D condensates) provided that an appropriate α > 0 is considered in the scaling
Rof ∝ Re−α

f (where α is expected to depend on the external driving force). So, lack
of universality seems plausible in forced rotating turbulent flows. To corroborate this
argument a large extent of the control parameters space should be covered with higher
Reynolds number and lower Rossby number simulations integrated for extremely long
times. However, this is beyond the reach of current computational capabilities.

The Rossby number dependence on the dynamics of flows with a highly random-in-
time and a time-independent mechanical force is also investigated at moderate Reynolds
numbers. For weakly rotating turbulence (high Rof ) the total energies of the two systems
are comparable. Even so for small enough Rof , even though large scale vortices are
present in both systems, energy condensates at large scales only for the flow with the
time-independent forcing as the energy spectra demonstrate.

Moreover, for large Rof the net felicities of the two systems are zero but as Rof

becomes smaller there is a critical Rocrit
f which the flow with the time-independent

forcing bifurcates discontinuously from a non-helical state to a helical state. On the
other hand, the helicity of the flow with the random-in-time forcing remains zero for all
values of Rof . Based on this observation we argue that the angle between Ωez and ∇×f

is important on the excitation of the inertial waves and consequently on the generation of
net helicity in rotating flows. Thus, a time-independent forcing adds a preferred direction
of propagation to the inertial waves inducing the mirror-symmetry breaking in our flows,
since this angle is fixed in time. From the other side, a highly random-in-time forcing
with excites inertial waves on all directions in equal proportions and this is why the net
helicity remains zero for any value of Rof . Such a mechanism has also been proposed for
planetary dynamos (Moffatt 1970).

In the end, the lack of consistency of the results in the literature is attributed here
on the forcing-depend dynamics of forced rotating turbulent flows. Experiments should
be able to show if this is true at higher Reynolds and lower Rossby numbers. The spon-
taneous emergence of helicity in such flows is an important aspect with implications on
cyclones persistence and intensity in supercell thunderstorms, a phenomenon which defies
weather forecasting (Markowski et al. 1998) but also in planetary dynamos.
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