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Foehn flows are typically associated with quite warm air temperatures. Though several

theories for the so-called foehn air warming have been developed over the past century,

no conclusion about the most important mechanism has been reached. The development

of new methods to calculate accurate air mass trajectories also over complex topography

has opened up a new perspective on this question. Air mass trajectories derived wind

field data from COSMO-model simulations with 20 s temporal resolution are used in

this study to investigate the origin of the foehn air and the contribution of adiabatic

and diabatic processes for two foehn events in the Swiss Alps with a focus on the

Rhine valley. The first investigated foehn event has no precipitation on the upstream

side of the Alps. The majority of air parcels stem from upstream altitudes above

1.8 km and most of the foehn air warming is due to adiabatic descent (∼ 79 %).

In the second investigated event significant upstream precipitation occurred. For this

case a significantly larger fraction of the foehn air parcels originate within the lowest

2 km of the upstream atmosphere (up to 70 %). Adiabatic descent accounts for the

largest part of the temperature change (∼ 70 %), while moist-diabatic processes explain

about 60 % of the potential temperature change. The vertical displacement across

the Alpine range is correlated with the diabatic temperature change: parcels strongly

heated by condensation, deposition and freezing are in general found at high altitudes

above the foehn valley, while parcels affected by diabatic cooling through evaporation,

sublimation and melting arrive closer to the valley floor. The high-resolution trajectories

also indicate a much more complicated vertical and horizontal flow pattern than

generally assumed with several distinct air streams upstream of the mountain range

and vertical “scrambling” of air masses.

Key Words: foehn flow, foehn air warming, trajectories, ...
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1. Introduction1

Foehn flows are a common feature of mountain meteorology,2

although disguised by different names, e.g., south and north foehn3

in the Alps, bora in the Dinaric Alps, chinook in the Rocky4

mountains, or Puelche and Raco in the Andes (Richner and5

Hächler 2013). South foehn in the northern Alpine valleys, the6

target area of this study, has a characteristic signal in surface7

observations typical of foehn winds in general: strong gusty winds8

go along with a substantial increase in temperature and decrease9

in relative humidity. The changes can be very abrupt, indicating10

that the foehn flow is already established at higher levels and11

suddenly touches down to the ground. The societal and economic12

impacts of these strong winds are well known: enhanced fire risks,13

impacts on air quality, beneficial impacts on agriculture, direct14

wind-driven damage to buildings and infrastructure, and human15

well-being (Richner and Hächler 2013). 16

Given its fierce nature, foehn flows have attracted the interest of 17

researchers for a long time. The scientific foehn research started 18

in the late 19th century with the aim to explain the ends of the 19

ice ages (Heer and von der Linth 1852; Dove 1867). Hence, one 20

key topic of this research was the origin of the warm foehn air 21

masses. The first scientific ideas proposed a Saharan origin of 22

the air arriving in the northern Alpine valleys (Heer and von der 23

Linth 1852), an idea which was questioned by Dove (1867) 24

who located the source region in the warm Caribbean Sea. In 25

contrast to this foehn theory based on advection of warm air from 26

’remote’ places, a localised theory was proposed by Hann (1866, 27

1885), which became known as the so-called thermodynamic 28

foehn theory (Fig. 1a): air impinging on the southern Alpine 29

slope is forced to rise along the obstacle, leading to substantial 30

precipitation and hence latent heat release of the ascending air 31

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls [Version: 2013/10/14 v1.1]



2 A. Miltenberger et al.

(a) (b)
(c)

Figure 1. Illustration of the Swiss (thermodynamic) (a) and the Austrian foehn theory (b). In the thermodynamic foehn theory moist air is assumed to ascend over the
upstream slope and to cool according to the moist-adiabatic lapse rate. Due to (heavy) precipitation on the upstream side, the air masses are assumed to be much drier
once they reach the lee-side slope, where they descend and warm dry-adiabatically. In contrast, the Austrian foehn theory does not rely on the co-occurrence of warm
temperatures in the foehn valley and upstream precipitation. The warm temperatures are explained by dry-adiabatic descent of air from above a stable, blocked air mass on
the upstream side. (c) Illustration of the typical foehn trajectories from the foehn case with significant precipitation investigated in this study (May 2013). Parcels strongly
heated by diabatic processes (condensation, deposition or freezing of water; red lines) remain at high altitudes on the lee side. In contrast, parcels affected by latent cooling
(evaporation, sublimation or melting of hydrometeors; blue lines) descend into the foehn valleys on the lee side.

parcels. As soon as the air parcels reach the Alpine ridge, or1

north-south valley transects, and the remaining hydrometeors2

have evaporated, the moist-adiabatic ascent is followed by a3

dry-adiabatic descent into the northern valleys. The difference4

in the two lapse rates then explains, according to this theory,5

the temperature increase of the foehn air. To be more precise,6

this theory attempts to explain why the potential temperature7

of air parcels in the northern valleys are often higher than8

the ones on the Alpine south side. As intuitive as the theory9

appears, some substantial deficiencies could be identified. Seibert10

(1990, 2004, 2005) outlined the main problems concisely, e.g., by11

assessing that the amount of precipitation needed to explain the12

north-south difference in potential temperature is unrealistically13

high. Furthermore, there are even foehn events in the northern14

Alpine valleys which completely lack precipitation on the Alpine15

south side. Elvidge and Renfrew (2015) very concisely discussed16

further mechanisms, which may contribute to foehn warming. In17

particular, the foehn air might originate from higher altitudes,18

possibly due to low-level orographic blocking on the upwind side.19

The potentially warmer and dryer air at these levels then flows into20

the foehn valleys in an ’isentropic drawdown’. A range of studies21

has demonstrated the importance of this mechanism for several22

mountain ranges including the Alps, Iceland and Antarctica (e.g.,23

Seibert 1990; Olafsson 2005; Elvidge et al. 2014; Grosvenor24

et al. 2014; Würsch and Sprenger 2015). Another mechanism25

mentioned by Elvidge and Renfrew (2015) is turbulent sensible26

heating and drying of the low-level flow due to mechanical mixing27

in a stably stratified atmosphere. This mechanism gained only28

little interest so far in relation to the foehn air warming problem.29

Finally, foehn flows are typically associated with dry, cloud-30

free conditions (but see Richner and Duerr, 2015, for the special31

conditions during dimmer foehn). Hence, the warming might also32

be due to direct radiative heating of low-level air on the lee side.33

In short, a unifying theory of foehn air warming remains elusive.34

Part of the problem might be that a unifying theory does not35

exist at all. For instance, Hann (1866) already distinguished36

between different foehn types. His notation, the two foehn types37

I and II, is nowadays replaced by the ’Austrian’ and ’Swiss’38

foehn types (Steinacker 2006). The geographical connotation39

already indicates where the two types are predominant, however,40

without precluding them to occur elsewhere. Recently, Würsch41

and Sprenger (2015) confirmed the different mean behaviour in42

the two regions with a trajectory analysis for the period 2000–43

2002. Air reaching a Swiss station ascended upwind of the44

Alps consistent with the thermodynamic theory. In contrast, air45

reaching an Austrian stations originated at higher altitudes above46

an inversion layer in the Po valley and descended dry-adiabatically47

into the foehn valleys (isentropic drawdown).48

Trajectories have long-since been recognised as a powerful49

method to investigate the question of foehn warming (Richner50

and Hächler 2013) and questions of mountain meteorology in 51

general (Chen and Smith 1987; Kljun et al. 2001; Roch 2011). 52

However, the technical challenges are substantial due to the 53

complex topography and the high temporal variability (gustiness) 54

of the winds. Therefore, Würsch and Sprenger (2015) refrained 55

from addressing this problem, given a relatively coarse horizontal 56

grid spacing (7 km) and 1 h temporal resolution of the wind fields. 57

Similar limitations apply to earlier Lagrangian studies assessing 58

the source region of foehn air (e.g., Seibert et al. 2000). Indeed, 59

it is illuminating that Elvidge and Renfrew (2015) proposed the 60

Antarctic Peninsula as ’an ideal natural laboratory’ for the study 61

of foehn! There, the topography and the upstream conditions are 62

often less intricate than for the Alps. 63

State-of-the-art high-resolution numerical models at least partly 64

resolve the high spatial and temporal variability of the wind 65

fields typical for mountainous terrain (e.g., Doyle et al. 66

2013). The coarse temporal resolution of the wind field data 67

typically used for trajectory calculations prevents one from 68

taking full advantage of these models for a Lagrangian analysis. 69

Therefore online trajectory tools, which run parallel to the 70

Eulerian simulation, are a major step forward in Lagrangian 71

mountain meteorology. For instance, Miltenberger et al. (2013) 72

implemented online trajectories into the COSMO model, hence 73

allowing the trajectories to take full advantage of a 20 s time 74

step. They applied the new method particularly to problems 75

in orographic precipitation (Miltenberger et al. 2015), but an 76

illustrative case of a north foehn study clearly showed the potential 77

of the new method for foehn-related studies (Miltenberger 2014). 78

In a systematic study, Bowman et al. (2013) looked at the minimal 79

time resolution of the input winds required in Lagrangian models. 80

They recommend a time step of 30 min for a 10 km grid spacing. 81

Extrapolating this, a COSMO simulation with a 2 km resolution 82

would need at least a 6 min time interval for the input wind - 83

which in turn requires huge storage capacities and transmission 84

bandwidths. While increasing the time resolution of the input 85

wind fields will substantially reduce interpolation errors in the 86

trajectory calculation, it will not eliminate errors in the wind fields 87

themselves (Bowman et al. 2013). For instance, the representation 88

of subgrid-scale turbulence most likely affects how the foehn 89

winds are established and how far they descend into the foehn 90

valleys (e.g., Gohm et al. 2008 for bora winds). This uncertainty 91

cannot easily be resolved and puts some basic limitations on the 92

representation of foehn winds in state-of-the-art NWP models 93

and consequently in trajectory data sets (e.g., Wilhelm 2012 or 94

a systematic study on foehn in COSMO during three years). 95

Trajectories in a turbulent flows require a cautious interpretation. 96

Air mass trajectories, such as implemented by Miltenberger et al. 97

(2013), do not represent the paths of individual air particles in the 98

turbulent flow, but necessarily represent larger air parcels, with 99

particle fluxes in and out of the air parcel’s boundaries (Batchelor 100

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



Lagrangian analysis of foehn air warming 3

1967for a detailed discussion of the air parcel concept). The1

time-mean effect of sub-grid processes such as turbulent mixing2

are represented as physical tendencies in otherwise conserved3

properties such as mass or energy along air mass trajectories (e.g.,4

Stevens et al. 1996; Sodemann et al. 2008).5

Despite these limitations of trajectories, the question of foehn6

air warming very recently gained new impetus from Lagrangian7

studies. Backward trajectories were used in two studies to8

investigate foehn air warming in the Toyama Plain (Japan).9

Ishizaki and Takayabu (2009) found dry- and moist-adiabatic10

processes as well as radiative heating to be important using wind11

field data from a climate model with 20 km grid spacing. With12

a Lagrangian energy budget analysis Takane and Kusaka (2011)13

showed that water vapour condensation did not contribute to14

record-high surface temperatures in the Tokyo area, but instead15

sensible heat fluxes from the surface played the most important16

role. A Lagrangian approach was also taken by Elvidge et al.17

(2014, 2015) to study warm foehn jets over the Larsen C Ice Shelf,18

Antarctica, and their influence on ice melting. In three different19

cases exhibiting varying degrees of flow linearity, the foehn20

jets are identified as manifestations of gap flows. The backward21

trajectory analysis traces the cool and moist conditions within the22

foehn jets as compared to the background wake to different source23

regions and a reduced diabatic warming. Finally, an interesting24

hypothesis was proposed by Smith et al. (2003) based on a small25

sample of trajectories for a south foehn case: air parcels ascending26

on the Alpine south side and producing precipitation continue27

to rise on the lee side, while trajectories descending into the28

foehn valley gain little heat by diabatic processes. Hence, in their29

words ”parcels with different heating histories ascend or descend30

to reach their buoyant equilibrium“. They suggested that the31

scrambling of air parcels should be included in future conceptual32

models of air mass transformations, and in foehn dynamics in33

particular.34

These new studies show that the old-standing problem of foehn35

warming can be addressed anew and potentially brought forward36

based on Lagrangian methods. The aim of the present study fits37

in very nicely with this new perspective. Its very specific research38

questions are to39

1. analyse the horizontal and vertical pathway of air arriving40

in the Rhine valley,41

2. quantify the foehn warming due to isentropic drawdown42

and microphysical processes in the Swiss Rhine valley, and43

3. decompose the moist-adiabatic contribution into several44

different microphysical processes.45

Note that the study does not explicitly quantify the warming46

effect due to turbulent mixing and radiative heating (or other47

non-microphysical processes), and hence does not intend to48

consider the warming problem exhaustively. However, the focus49

on different microphysical processes will allow unexpected50

compensating effects to be discussed.51

The research questions listed above are addressed by considering52

two different foehn cases in 2013: one lacking upstream53

precipitation (4-7 March 2013, dry foehn event) and one with54

substantial upstream precipitation (14-16 May 2013, moist foehn55

event). The comparison of the two cases will allow us to asses the56

warming mechanisms in two potentially very different situations.57

The analysis presented in this study is restricted to the upper Rhine58

valley, a major foehn valley between Switzerland and Austria.59

This area was a target area in the Mesoscale Alpine Programme60

(MAP, Bougeault et al. 2001), an international field experiment61

with intense observation periods in September 1999. The sub-62

project FORM within MAP explicitly addressed the foehn in63

the Rhine valley (Richner et al. 2006; Drobinski et al. 2007).64

Further studies focussing on foehn in the Rhine valley considered65

the foehn’s influence on the ozone distribution (Baumann et al. 66

2001), investigated the important interaction of the foehn flow 67

with the cold-air pools (Flamant et al. 2006), presented wind 68

profiler measurements (Vogt and Jaubert 2004), and performed 69

numerical simulations of a foehn event (Zängl et al. 2004). In 70

short, the two cases selected for this study fit in nicely with the 71

already existing literature about the foehn flow in one of the best 72

studied foehn valleys in the Alps. 73

The remainder of the article is structured as follows: section 2 74

describes the weather prediction model, the trajectory calculation 75

and the diagnostics used. Section 3 presents the dry foehn event, 76

followed by the moist foehn event in section 4. Finally, section 5 77

summarises the main results. 78

2. Numerical model data and diagnostics 79

2.1. Model Set-Up and Trajectory Data 80

The foehn cases were modeled with the non-hydrostatic numerical 81

weather prediction model COSMO (version 4.7) (Baldauf et al. 82

2011). All simulations were conducted with a horizontal grid 83

spacing of 2.2 km (COSMO-2). Boundary and initial conditions 84

are derived from a COSMO-model simulation with a horizontal 85

grid spacing of 7 km driven by ERA-Interim data (Dee et al. 86

2011). The COSMO-2 domain covers the greater Alpine region 87

(approximately 41–50◦ N and 1–17◦ E). 60 levels with a mean 88

spacing of 388 m were used (13 m close to the surface and 89

1190 m at 23 km). No parameterisation of deep convection 90

was employed for the COSMO-2 simulations, while COSMO- 91

7 used the Tiedtke scheme. Cloud microphysical processes 92

were parameterised with the two-moment scheme of Seifert and 93

Beheng (2006), which predicts mass and number densities of 94

five hydrometeor classes (cloud, rain, ice, snow and graupel). 95

Finally, boundary-layer, surface and turbulent processes were all 96

parameterised (Raschendorfer 2001; Baldauf et al. 2011). The 97

COSMO-2 simulation starts at 21 UTC 3 March 2013 for the dry 98

foehn case and at 03 UTC 14 May 2013 for the moist foehn case. 99

The simulations were run for 102 and 93 hours, respectively. 100

The Lagrangian analysis is based on trajectories calculated with 101

the new online-trajectory module (Miltenberger et al. 2013). It 102

solves the trajectory equation using the grid-scale wind field 103

at each Eulerian model timestep (20 s). The wind field at the 104

trajectory location is calculated from the neighbouring eight grid 105

points by trilinear spatial interpolation along the model coordinate 106

system. 107

Forward trajectories were started every 0.02◦(about 2 km) along a 108

line over Northern Italy (approximately between 43◦ N, 6◦ E and 109

45◦ N, 17◦ E). In the vertical, starting points were located every 110

100 m between the surface and 4 km altitude. Trajectories were 111

started every hour between 23 UTC 3 March 2013 and 00 UTC 112

6 March 2013 for the dry case, and between 05 UTC 14 May 113

2013 and 08 UTC 16 May 2013 for the moist case. For further 114

analysis we considered only trajectories passing through the Rhine 115

valley, which we defined as a rectangular box with an extent of 116

0.58◦× 1.05◦centred at 47.16◦N, 9.53◦E (green box in Fig. 3b). 117

Additionally, for the dry case only, trajectories had to stay outside 118

clouds, hence being representative of the first dry episode. Figure 119

2 (grey points) shows when and at which altitude the air parcels 120

arrive in the Rhine valley. For both foehn cases, many air parcels 121

are found in the lowest 3 km above the valley floor, i.e., the valley 122

atmosphere. In total 14125 (27491) trajectories are included in the 123

analysis for the dry (moist) foehn event. 124

The air parcels’ history is studied based on the following 125

variables, all being available at 20 s temporal resolution: air 126

temperature, pressure, the mixing ratio of water vapour, cloud 127

droplets, rain, ice, graupel and snow, and the three velocity 128

components. For the moist case, additionally, all microphysical 129

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



4 A. Miltenberger et al.

rates involving phase changes of water were studied. In1

accordance with the trajectory calculation, the variables have been2

derived by trilinear spatial interpolation from the Eulerian fields.3

2.2. Variables and Diagnostics4

For adiabatic, frictionless flow the potential temperature θ is

conserved along air mass trajectories. If diabatic processes occur,

potential temperature changes according to

Dθ

Dt
= Slh + Srad + Sturb (1)

where Slh denotes the impact of latent heating, Srad of long-

and short-wave radiation and Sturb of turbulence (including

diffusion in a numerical model). The term Slh depends on cloud

microphysical processes and can be further decomposed into

Slh = Sdep + Scond + Sfreez − Ssub − Sevap − Smelt (2)

where the terms describe the change due to vapour deposition

on frozen hydrometeors (Sdep), condensation on liquid hydrom-

eteors (Scond), freezing of liquid hydrometeors including riming

(Sfreez), sublimation of frozen hydrometeors (Ssub), evaporation

of liquid hydrometeors (Sevap) and melting of frozen hydromete-

ors (Smelt).

The latent heating rates Sx, where x stands for any of the six

processes listed above, are calculated according to

Sx(t) ≈
DT

Dt
|x

(

p0
p

)R/cp

=
Lq

cp

Dq

Dt
|x

(

p0
p

)R/cp

(3)

where q is the mass mixing ratio of the relevant hydrometeor5

category for process x, e.g., cloud and rain water content for6

evaporation and ice, snow and graupel water content for melting.7

Lq is the latent heat of phase change, cp the heat capacity of air8

and R the gas constant of air. Note that this approach assumes that9

pressure changes due to microphysical processes are negligble.10

But with this restriction, the approach allows us to quantify the11

role of different microphysical processes for the net latent heating12

along trajectories. Of particular interest will be the latent heating13

between a location upstream of the Alpine ridge (45◦N, green14

dashed line labelled “upstream” in Fig. 3b) and one in the Rhine15

valley (“ALT” in Fig. 3b).16

Finally, some remarks concerning numerical artefacts are17

necessary. Potential temperature is perfectly conserved along18

trajectories in an adiabatic, frictionless flow. However, this does19

not necessarily apply for numerically computed trajectories,20

because (i) conservation might be affected by numerical21

approximations to the trajectory equation (truncation and22

interpolation errors) and (ii) numerical diffusion and non-23

conservative advection in the NWP model might introduce24

artificial changes in potential temperature (e.g., Stohl and Seibert25

1998). The magnitude of these effects can only be assessed in a26

budget closure study, i.e., each term in eq. 1 must be explicitly27

quantified. Unfortunately, not all required terms are available28

for the current study. However, previous studies indicate that29

the trajectories significantly improve with increasing temporal30

resolution of the input wind fields (e.g., Stohl and Seibert 1998;31

Grell et al. 2004; Bowman et al. 2013). Since the focus of our32

study is on latent heating, any numerical artefacts in the potential33

temperature budget will be contained in ∆θ for the dry case and34

∆θ − Slh for the moist case, respectively.35

3. Dry foehn event 36

3.1. Synoptic situation 37

A long-lasting south foehn event was observed in the Rhine valley 38

during the period 4-7 March 2013. At its beginning, an upper-level 39

trough, located off the coast of Portugal, steered warm southerly 40

air towards the Alps. As this trough moved further eastward, a 41

strong pressure gradient developed across the Alps resulting in 42

a pronounced foehn knee in the sea-level pressure field (contour 43

lines in Fig. 3a). Streaks of high wind velocity emanating from 44

the northern Alpine foehn valleys are visible in the low-level wind 45

fields and a strong low-level jet developed on the western side of 46

the Alps (colour shading in Fig. 3a). During the first 20 h of the 47

foehn event no precipitation was observed on the southern side 48

of the Alps, which is well reproduced in the model simulations 49

(Fig. 3b). In contrast, the second phase of the foehn event on 50

6 March 2013 is characterised by transient heavy precipitation 51

(not shown). Finally, during the night of 6 to 7 March 2013 52

the low-pressure system associated with the upper-level trough 53

dissolved and subsequently the foehn flow ceased in the Rhine 54

valley. More specifically, the foehn started at 22 UTC 4 March 55

2013 in the Rhine valley (in Vaduz) and foehn conditions lasted 56

until 5 UTC 7 March 2013 (Arbeitsgemeinschaft Föhnforschung 57

Rheintal-Bodensee 2014). 58

At the surface weather station in Vaduz the onset of the foehn 59

event was marked by a strong increase in temperature of 13 K and 60

a drop in relative humidity of 60 % (cyan and red lines in Fig. 2a). 61

While the foehn flow at upper levels develops within our COSMO- 62

2 simulation, the rapid increase of potential temperature and wind 63

speed in the Rhine valley is not captured at ground level. High 64

wind speeds and warm temperatures associated with the foehn 65

flow remain several hundred meters above model ground level 66

(not shown), indicating that the foehn flow is not able to penetrate 67

further towards the surface in the model. The timing of the foehn 68

flow at higher levels and the onset of upstream precipitation is 69

well simulated by COSMO-2. In the following, only the first dry 70

phase of the foehn event between 22 UTC 4 March and 18 UTC 71

5 March will be further analysed. Due to the lack of any significant 72

upstream precipitation microphysical processes can be neglected 73

during this phase. 74

3.2. Origin of foehn air 75

Two different sources of the foehn air can be identified during 76

almost the entire first period of the foehn event. One trajectory 77

bundle originating over western Italy and one including 78

trajectories originating further east towards the Adriatic sea 79

(Fig. 4). Trajectories in the first bundle follow an almost straight 80

north-south line across the Alps. Upstream of the Alps these 81

air parcels are located at altitudes larger than 1.8 km over the 82

Po valley and they ascend only very little on their approach to 83

the Alpine range (on average about 300 m, Fig. 4). In contrast, 84

trajectories from the second bundle have a more northwesterly 85

direction south of the Alps and are located at slightly lower levels 86

around 1.5 km. A closer analysis of the upstream conditions 87

indicates that these trajectories originate from a thin filament 88

at the top of the planetary boundary layer, which stretches over 89

the entire Po valley. The lower level branch is absent in the first 90

hours of the foehn event, but later contributes between 20 % 91

and 40 % of all foehn trajectories. On the northern side of the 92

Alps trajectories from both air streams descend rapidly (Fig. 4). 93

Above the central Rhine valley the air parcels are, on average, 94

at about the same altitude as on the southern side. Further 95

downstream (Altstätten), they have reached a level about 700 m 96

below their upstream altitude. Trajectories with the furthest 97

descent have altitudes between 1.5–2.0 km above Altstätten, 98

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 2. Height-time distribution of the trajectories (grey dots) passing over the Rhine valley (defined by the green box in Fig. 3b) for the March (a) and the May 2013
(b) event. Additionally, the evolution of the 2 m air temperature (red) and relative humidity (cyan, units on the right) at the SwissMetNet station in Vaduz is displayed.
The left vertical black line indicates the onset of foehn in Vaduz and the right one its cessation according to the AGF data base (Arbeitsgemeinschaft Föhnforschung
Rheintal-Bodensee 2014). The black dashed line in panel (a) indicates the onset of significant surface precipitation over the southern slopes of the Alps.
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Figure 3. Dry foehn case: synoptic scale conditions. (a) Horizontal wind field at 850 hPa (colour shading) and mean sea level pressure (orange lines, contour intervals of
5hPa) on 08 UTC 05 March 2013. (b) Accumulated surface precipitation for the period between 22 UTC 04 March and 18 UTC 05 March 2013. The green box indicates
the area used for the selection of the trajectories. Several important locations for the evaluation of the trajectory data are indicated: the air parcels’ upstream properties are
retrieved along the line labelled ”upstream” and their properties above the highest topography at the line labelled ”crest”. In addition, the location of Vaduz (VAD) and
Altstätten (ALT) in the Rhine valley are shown, which are used to determine the air parcels’ properties within the foehn valley. Grey contours in both panels show the
topography (contour intervals of 1 km).

which coincides with a location of strong warming in COSMO-21

cross-sections along the Rhine valley (not shown). The furthest2

descent is observed at the beginning of the foehn event. In the3

late afternoon and the evening, i.e., immediately before and4

during the onset of upstream precipitation, the number of parcels5

experiencing a strong net downward displacement decreases and6

those experiencing a positive net vertical displacement increases7

(not shown).8

9

3.3. Temperature and moisture budget10

All air parcels experience substantial temperature changes (∆T )11

during the passage of the Alpine ridge (Fig. 5b). Between their12

upstream location and the Alpine crest almost all parcels cool,13

in the mean by -4 ◦ C (red bars). After passing the crest, the14

temperature rises again resulting in a net temperature increase of15

about 6.5 ◦ C at Altstätten (cyan bars). For individual trajectories16

the south-north temperature change varies between -2 ◦ C and17

15 ◦ C. In the first five hours of the foehn event trajectories passing18

the Rhine valley in the lowest 1.5 km of the atmosphere tend19

to warm more strongly than trajectories passing at higher levels,20

afterwards the relation is reversed (Fig. 5a). This is consistent with 21

the warmest air being located between 1.5 and 2 km altitude in 22

Eulerian cross-sections (sec. 3.1). The smallest ∆T values occur 23

for all trajectories in the early morning hours between about 5 and 24

8 UTC. 25

Overall, the temperature change agrees very well with temperature 26

changes expected as a results of the vertical parcel motion 27

discussed in the previous section (isentropic drawdown): the 28

parcel temperature decreases in regions of ascent (south of 29

the Alpine crest), and rises during the descent north of the 30

Alpine crest. For adiabatic flow, the potential temperature should 31

not change along trajectories. At 0.24 K, the mean potential 32

temperature change ∆θ is indeed very close to 0 K during this 33

dry phase of the foehn (Fig. 6a). The contribution of isentropic 34

drawdown to the temperature change is quantified by the ratio 35

of the adiabatic temperature change to the sum of the absolute 36

adiabatic and diabatic one: |∆Tadia|/(|∆Tadia|+ |∆Tdiab|). In 37

this metric isentropic drawdown, on average, accounts for 78.6 % 38

of the total temperature change (Fig. 5c). While there is little 39

difference between parcels passing within the valley atmosphere 40

(blue line) and above (cyan line), the importance of adiabatic 41

processes steadily decline from almost 90 % to about 70 % 42

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 4. Dry foehn case: path of air parcels arriving in the Rhine valley in 20 min intervals centred around 10 UTC (a) and 16 UTC (b) on 05 March 2013. For both dates
the path of the trajectories is shown in the height-latitude plane (a, c) and in the latitude-longitude plane (b, d). The color coding of the trajectories in the latitude-longitude
plots indicates their altitude. Grey contours in both panels show the topography (contour intervals of 1 km). In the height-latitude plots trajectories with upstream altitudes
(altitude at 45◦N) below 1.7 km are shown in dark blue and those with larger upstream altitudes in cyan. The black line indicates the mean topography beneath the
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Figure 5. Dry foehn case: temperature change ∆T along trajectories between their
upstream location and Altstätten (s. definitions in Fig. 3). (a) ∆T as a function
of the trajectory arrival time in Altstätten. Values for trajectories within the valley
atmosphere, i.e., below 1.5 km above Altstätten, are shown in dark green and those
for trajectories passing higher up in light green. The black dot represents the median,
the upper and lower ends of the bars the 25th and 75th percentile. Open circle
show data points deviating by more than 2.7 standard deviations from the median.
(b) Distribution of ∆T for all trajectories between the upstream location and the
crest (red) or Altstätten (cyan). (c) Fraction of the potential temperature change
explainable by adiabatic motion for parcels arriving below 1.5 km (dark green) and
above (light green).

percent. The non-adiabatic temperature change ∆θ is only very1

weakly correlated with ∆T (R=-0.18). Values of ∆θ vary between2

-5 K and 7 K for individual air parcels (Fig. 6a). The spread of3

the ∆θ increases significantly over the downstream slope (red4

and cyan histograms). Differences between trajectories passing5

at different altitudes are small (Fig. 6a,c), but ∆θ values depend6

on the arrival time in the Rhine valley. While negative potential7

temperature changes dominate before 10 UTC, the majority of8

parcels have positiveve ∆θ afterwards (Fig. 6c). Turbulent mixing9

or radiative effects (eq. 1) must be responsible for the diabatic10

temperature changes, because warming due to microphysical11

processes can be ruled out in the period considered (Fig. 3a).12

Of course, other potential sources are violations of energy13

conservation in the numerical weather prediction model or the14

trajectory calculation (sec. 2.2).15

Terrain-induced gravity waves or wind shear generated at the16

boundaries of the strongly accelerated foehn stream, mechanically17

enhances turbulent mixing. In accordance with this, Richardson18
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Figure 6. Dry foehn case: potential temperature change ∆θ along trajectories
between their upstream location and Altstätten (see definitions in Fig. 3). (a, b)
are identical to those in Fig. 6 but pertain to potential temperature. (c) Each dot
corresponds to a trajectory passing above 47.4◦N at the corresponding time and
altitude. The color coding corresponds to the ∆θ between the upstream location
and Altstätten.

numbers well below 1 and rather high values of turbulent kinetic 19

energy are simulated by COSMO-2 on the downstream side of 20

the Alpine range (not shown). Between the central and lower 21

Rhine valley the ∆θ distribution extends particularly towards 22

colder values (not shown), which could be explicable by mixing 23

with colder air close to the valley floor. In contrast, the diabatic 24

temperature changes observed upstream of the Alps are more 25

difficult to understand: there, the Richardson number is in general 26

rather high and the turbulent kinetic energy small. However, most 27

of the air parcels originate within a thin filament at the top of 28

the planetary boundary layer and therefore may well be affected 29

by mixing. Also, over the mountain ranges south of the crest, 30

gravity waves form, which can enhance mixing mechanically. The 31

temporal variation of ∆θ also suggests an influence of radiative 32

processes, as the potential temperature increases for trajectories 33

travelling predominantly during daytime and decreases for those 34

travelling during nighttime. 35

So far, only the temperature budget along the trajectories was 36

considered. The moisture budget of the air parcels further supports 37

our findings. The overall moisture change is very small (on 38

average 0.3 g kg−1 up to the crest and 0.7 g kg−1 up to Altstätten, 39

Fig. 7b). Hardly any trajectories lose moisture (Fig. 7b). The 40

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 7. Dry foehn case: specific moisture change ∆q along trajectories between
their upstream location and Altstätten (see definitions in Fig. 3). (a, b) are identical
to those in Fig. 6 but pertain to specific humidity. (c) Each dot corresponds to a
trajectory passing above 47.4◦N at the corresponding time and altitude. The color
coding corresponds to the ∆q between the upstream location and Altstätten.

moisture gain increases for all parcels after 9 UTC and it is1

in general larger for parcels passing at altitudes below 1.5 km2

through the Rhine valley (Fig. 7a,c). These observations are3

consistent with turbulent mixing with moist boundary layer air4

and the absence of precipitation formation, which would reduce5

the moisture content.6

4. Moist foehn event7

4.1. Synoptic situation8

figure 9 The second foehn event analysed in this paper occurred9

between 14 and 16 May 2013. Strong southerly flow was steered10

towards the Alps on the downstream side of an extended upper-11

level trough associated with a surface low over the British Isles.12

Within this synoptic scale environment a strong pressure gradient13

developed across the Alpine range leading to foehn flow in the14

northern Alpine valleys and the formation of a strong low-level jet15

around the western side of the Alps (Fig. 8a). In contrast to the16

previous case, precipitation on the upstream side occurred during17

the entire foehn event with observed values locally exceeding18

100 mm. The model precipitation of 60 to 100 mm agrees well19

with observed values (Fig. 8b). During the evening of 16 May20

the upper-level trough developed into a cut-off low to the west of21

France. With the related change in the large-scale flow direction22

foehn flow ceased.23

In the Rhine valley foehn flow was established around24

23 UTC 14 May and lasted until 15 UTC 16 May 201325

(Arbeitsgemeinschaft Föhnforschung Rheintal-Bodensee 2014).26

At the surface station Vaduz the foehn onset was marked by a27

strong increase in wind speed, a drop in relative humidity by about28

30 % and a rise in air temperature by about 5 K (Fig. 2b). This29

foehn signal is somewhat smaller than in the previously discussed30

case (temperature increase 13 K, relative humidity drop 60 %).31

Foehn flow developed also in the COSMO-2 simulation leading32

to a marked increase in temperature and wind speed in the Rhine33

valley. In contrast to the previous case, the foehn flow in the model34

penetrates the entire valley atmosphere. However, the amplitude35

of the diurnal cycle is overestimated by about a factor two in the36

lowest 500 m. The timing of foehn onset and cessation agrees well37

with the observations.38
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Figure 10. Moist foehn case: temperature change ∆T along trajectories between
their upstream location and Altstätten (see definitions in Fig. 3). (a) ∆T as a
function of the trajectory arrival time in Altstätten. Values for trajectories within the
valley atmosphere, i.e., below 1.5 km above Altstätten, are shown in dark green and
those for trajectories passing higher up in light green. (b) Distribution of ∆T for all
trajectories between the upstream location and the crest (red) or Altstätten (cyan).
(c) Fraction of the potential temperature change explicable by adiabatic motion for
parcels arriving below 1.5 km (dark green) and above (light green).

4.2. Origin of foehn air 39

The source area of the foehn air mass shifts continuously 40

eastwards throughout the foehn event from the Gulf of Genoa to 41

the Adriatic Sea (Fig. 9). The upstream altitude of the parcels 42

varies between several hundred meters and 3 km. Parcels with 43

upstream altitudes below 1.7 km (low-level trajectories) originate 44

further east than higher level parcels, at times forming two 45

distinct air streams with different horizontal paths. A similar 46

pattern emerged in the dry case. In the first phase of the event 47

(until 12 UTC 15 May) low-level trajectories constitute about 48

40 % of all trajectories. Low-level trajectories ascend during 49

their approach to the Alps, while high-level trajectories remain 50

at almost constant altitude (Fig. 9a). Over the northern slope 51

of the Alps high-level trajectories descend below 2.5 km, low- 52

level trajectories descend more slowly. We refer to this pattern of 53

vertical displacement as “scrambling” of air masses, as suggested 54

earlier by Smith et al. (2003). At later stages the contribution of 55

low-level trajectories to the foehn flow reaches 80 % (Fig. 9b), 56

although the low-level air stream temporarily ceases during the 57

night hours of 15 and 16 May. Consistent with the low source 58

altitudes almost all parcels rise by several hundred meters over 59

the southern Alps. However, the descent on the northern side is 60

less pronounced and low-level trajectories pass the Rhine valley 61

anywhere between the surface and 3 km altitude (Fig. 9b). 62

Over the entire foehn event the mean vertical displacement 63

of parcels across the Alpine ridge is 0.46 km with values for 64

individual parcels varying between -2 km and 5 km. While in 65

the dry foehn case all trajectories showed a negative vertical 66

displacement in the lower Rhine valley, in the moist case only 67

50 % of the parcels have a negative vertical displacement. The 68

upstream ascent is on average larger (1.1 km compared to 0.4 km) 69

and the downstream descent smaller (0.7 km compared to 1.1 km) 70

than in the dry foehn case. 71

4.3. Temperature and moisture budget 72

The temperature of almost all air parcels decreases between 73

their upstream location and the passage of the Alpine crest (on 74

average: -8.3 ◦C, Fig. 10b red histogram). Between the upstream 75

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 8. Moist foehn event: Synoptic scale conditions during the south foehn event in May 2013. (a) Horizontal wind field at 850 hPa and mean sea level pressure
(orange lines, contour intervals of 5 hPa) on 12 UTC 15 May 2013. (b) Accumulated surface precipitation for the period between 23 UTC 14 May and 15 UTC 16 May
2013. Grey contours in both panels show the topography (contour intervals of 1 km).
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Figure 9. Moist foehn event: Path of the air parcels arriving in the Rhine valley in 20 min intervals centred around 05 UTC on 15 May 2013 (a) and 11 UTC on 16 May
2013 (b). For both dates the path of the trajectories is shown in the height-latitude plane (left) and in the latitude-longitude plane (right). The color coding of the trajectories
in the latitude-longitude plots indicates their altitude. Grey contours in both panels show the topography (contour intervals of 1 km). In the height-latitude plots trajectories
with upstream altitudes (altitude at 45◦N) below 1.7 km are shown in dark blue and those with larger upstream altitudes in cyan. The black line indicates the mean
topography beneath the trajectories.

location and Altstätten the temperature change ∆T of individual1

trajectories varies between -40 ◦C and 20 ◦C, where about 50 %2

of the trajectories experience a warming (Fig. 10b cyan histogram,3

mean: -1.8 ◦C). Overall this is consistent with the vertical4

displacements discussed in the previous section and hence points5

to the isentropic drawdown mechanism. Accordingly, between6

60 % and 80 % of the temperature variation can be explained7

by adiabatic motion of the trajectories (Fig. 10c blue curves).8

This applies for both trajectories passing within the Rhine valley9

(solid blue line), i.e., with downstream altitudes less than 1.5 km,10

and trajectories passing aloft (dashed blue line). On average11

the temperature change for trajectories within the Rhine valley12

is slightly larger than for trajectories passing aloft (Fig. 10a).13

The difference is particularly pronounced between 12 UTC and14

18 UTC 15 May and between 06 UTC and 12 UTC 16 May.15

In the first half of the foehn event the majority of trajectories16

undergo a warming, while cooling trajectories are more common17

during 16 May. During the second half of the foehn event hardly18

any foehn trajectories have upstream altitudes larger than 1.8 km,19

which makes it difficult for parcels to descend relative to their20

upstream altitude and thereby explains the decrease of the mean21

∆T .22

Consistent with the large contribution of adiabatic temperature23

changes, the potential temperature changes ∆θ are smaller than24

∆T : values for individual trajectories vary between -10 K and25

20 K (Fig. 11b cyan histogram). For over 80 % of the trajectories26
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Figure 11. Moist foehn case: potential temperature change ∆θ along trajectories
between their upstream location and Altstätten (see definitions in Fig. 3). (a, b)
are identical to those in Fig. 6 but pertain to potential temperature. (c) Each dot
corresponds to a trajectory passing above 47.4◦N at the corresponding time and
altitude. The colour coding corresponds to the ∆θ between the upstream location
and Altstätten.
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Figure 13. Moist foehn event: contribution of different microphysical processes to the net latent heating as a function of the trajectory arrival time in the Rhine valley:
condensation (blue), evaporation (red), deposition (cyan), sublimation (yellow), freezing (dark green) and melting (light green). In addition, the net potential temperature
change is shown (dark grey). The potential temperature changes were evaluated between 45◦N and 47.4◦N for each trajectory. The shown values are averages over those
for individual trajectories arriving within 15 min intervals. Separate averages were computed for trajectories arriving below 1.5 km (a), between 1.5 km and 3.0 km (c),
between 3.0 km and 4.5 km (b) and above 4.5 km (d).

the potential temperature increases with a mean ∆θ of 3.4 K.1

In contrast, the mean ∆θ was close to 0 K in the dry case. The2

distribution of ∆θ between the upstream location and the crest3

is almost identical to the one between the upstream location and4

the lower Rhine valley, i.e., most diabatic temperature changes5

occur upstream of the Alpine crest. This would be consistent6

with a major contribution of latent heating during cloud and7

precipitation formation in the main ascent region over the southern8

slopes, which will be further explored below. Trajectories at high9

downstream altitudes have on average larger absolute ∆θ than10

trajectories passing through the Rhine valley (Fig. 11a and c). For11

the latter, ∆θ values are even predominantly negative between 00–12

06 UTC on 15 May and between 18 UTC 15 May and 03 UTC13

16 May. A comparison of Fig. 11a and Fig. 11b shows that (i)14

trajectories passing through the Rhine valley have a larger ∆T and15

a smaller ∆θ than trajectories passing aloft and (ii) ∆T and ∆θ are16

anti-correlated particularly in the second half of the foehn event.17

As discussed in more detail later, this is explicable by a larger18

positive vertical displacement of trajectories experiencing latent19

heating and smaller positive or negative vertical displacement of20

trajectories experiencing latent cooling.21

Specific moisture changes ∆q along trajectories are much22

larger than in the dry case: values vary between -7.7 gkg−1 and23

4.7 gkg−1. About 67 % of trajectories lose moisture during the24

passage of the Alpine crest (Fig. 11b). Moisture losses occur25

predominantly along trajectories passing the Rhine valley at26

higher altitudes, while the majority of trajectories passing through27

the Rhine valley gain moisture almost during the entire foehn28

event. Higher-level trajectories appear to have small moisture29

losses between 9–18 UTC on 15 May (Fig. 11a and c). However,30

as indicated by Fig. 11c, altitudes above 4.5 km are not sampled31

by the trajectories during the latter time period. At other times32

the majority of the trajectories in this altitude range were losing33

moisture. Similarly to ∆θ, ∆q over the northern slope is generally34

very small as indicated by the similarity of the two histograms35

in Fig. 12b. This further supports the importance of precipitation36

formation for the diabatic temperature changes.37

The temperature change due to cloud microphysical processes38

can be calculated according to eq. 3. Based on this estimate39

latent heating explains on average 58.7 % of the total diabatic40

temperature change. However, the explained fraction varies41

strongly with time: latent heating is least important during the42
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Figure 12. Moist foehn case: specific moisture change ∆q along trajectories
between their upstream location and Altstätten (see definitions in Fig. 3). (a, b)
are identical to those in Fig. 6 but pertain to specific moisture content. (c) Each
dot corresponds to a trajectory passing above 47.4◦N at the corresponding time and
altitude. The color coding corresponds to the ∆q between the upstream location and
Altstätten.

morning and early afternoon of 15 May (explained variance 43

smaller than 40 %), while at other times it explains a large fraction 44

of ∆θ (up to 90 % on 16 May). Latent heating contributions are 45

also more important for trajectories with downstream altitudes 46

larger than 1.7 km. Trajectories passing through the valley 47

atmosphere are more likely affected by turbulent mixing, which 48

may explain the smaller contribution of latent heating. Consistent 49

with this hypothesis, the diabatic temperature changes on the 50

downstream side are larger for these trajectories compared to 51

those passing above the valley atmosphere (not shown). The 52

remaining unattributed potential temperature change (10–60 % of 53

the total) suggests that radiative and mixing processes play an 54

important role in the potential temperature budget, which was 55

also the case in the dry foehn event. Fig. 14 shows this residual 56

potential temperature change (∆θ − Slh). Compared to ∆θ the 57

residual temperature changes are more evenly distributed with 58

altitude and show a clear diurnal cycle with larger values during 59

daytime. Overall, the structure of the residual temperature changes 60
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closely resembles the one of ∆θ in the dry case, albeit with1

slightly larger absolute values.2

Further insight into the role of microphysical processes on3

the potential temperature budget can be gained by assessing4

the contribution of individual microphysical processes to the5

overall latent heating. Relevant microphysical processes are6

condensation of liquid water, evaporation of liquid water, freezing7

of liquid water to solid particles including riming, melting of8

solid particles to liquid drops, deposition of water vapour on9

solid particles and sublimation of solid particles. The latent10

heating rates for each of these processes were calculated by11

integrating equation 3 along each trajectory. Fig. 13 shows the12

evolution of these terms for trajectories passing the Rhine valley at13

different height intervals. Although the contribution of individual14

processes varies throughout the foehn event, some general patterns15

can be identified. Latent heating by condensation, deposition16

and freezing is most important for parcels with downstream17

altitudes larger than 3 km (Fig. 13b and d). Processes associated18

with latent cooling are insignificant. In contrast, sublimation,19

melting and evaporation are important for trajectories arriving20

at lower altitudes and condensation, deposition and freezing are21

insignificant except for the last 18 h of the foehn event (Fig. 13a22

and c). For parcels below 1.5 km latent cooling even dominates23

the total potential temperature change around 00 UTC on 16 May24

(Fig. 13a).25

The transition from the dominance of latent heating to a stronger26

contribution from latent cooling with decreasing arrival altitude27

in the Rhine valley is very interesting in terms of foehn flow28

dynamics. Parcels experiencing strong latent heating during the29

ascent may be too buoyant to descend into the northern Alpine30

foehn valleys, while parcels primarily influenced by evaporation,31

sublimation and melting may descend more easily on the leeward32

side. The potential role of latent cooling in the descent of foehn33

air into the valley is also interesting from a model perspective,34

since, in particular, the melting of snow and graupel is typically35

not very well represented in microphysical schemes (e.g., Frick36

et al. 2013).37

5. Conclusions38

Foehn air warming is investigated for two different south39

foehn events in the northern Alpine Rhine valley. One event is40

characterised by barely any precipitation on the Alpine south41

side during its first phase (4-7 March 2013, dry foehn event).42

Strong upstream precipitation occurs in the second case (14-1643

May 2013, moist foehn event). The analysis relies on trajectories44

which are calculated from COSMO-model wind fields with a grid45

spacing of 2 km and a temporal resolution of 20 s. Additionally,46

a multitude of thermodynamic and microphysical parameters47

are traced along trajectories, which in turn allows the warming48

due to isentropic drawdown and microphysical processes to49

be quantified. Warming due to turbulent mixing and radiative50

processes is, however, only qualitatively assessed.51

The Lagrangian analysis allows us to draw the following main52

conclusions with respect to the research questions posed at the53

end of the introduction:54

1. In both cases, a fairly complicated flow pattern with several55

distinct air streams upstream of the Alps occurs. This is56

consistent with earlier results from Rotunno and Ferreti57

(2003). While in the dry case most foehn air parcels58

originate at upstream altitudes above 1.5 km, low-level59

parcels originating close to sea level contribute strongly to60

the foehn flow in the moist case. Trajectories in the dry61

case rise only slightly during the upstream approach of the62

Alps and then rapidly descend into the foehn valley (mean63

vertical displacement 700 m). In contrast, trajectories in the64
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moist foehn case ascend rapidly over the southern slope, but 65

only 50 % of the trajectories finally descend into the foehn 66

valley. 67

2. In both cases, a large fraction of the temperature change 68

can be attributed to adiabatic processes, which explain 69

79 % and 70 % of the temperature variance, respectively. 70

Accordingly, isentropic drawdown is the key warming 71

mechanism. In the moist foehn case, latent heating 72

and cooling account for 58.7 % of the variance in 73

potential temperature. The spatio-temporal distribution of 74

the potential temperature changes in the dry foehn case 75

suggests an important role for turbulent mixing with 76

boundary layer air, which itself is affected by radiative 77

heating during daytime and radiative cooling during 78

night time. Additionally, internal mixing of the foehn air 79

mass may result in diabatic temperature changes. In the 80

moist foehn case, the potential temperature changes not 81

attributable to moist processes exhibit a very similar spatio- 82

temporal distribution, but have a slightly larger amplitude. 83

3. Moist processes played an important role for potential 84

temperature changes in the moist foehn case. For parcels 85

travelling through the Rhine valley at altitudes below 86

1.5 km, evaporation, sublimation and melting are the most 87

important processes, i.e., processes associated with latent 88

cooling. In contrast, condensation, deposition and freezing 89

dominate for parcels arriving above 3 km, i.e., processes 90

associated with latent heating. In this respect, the vertical 91

“scrambling” of air parcels is an interesting aspect of 92

our model simulations: Parcels producing a large amount 93

of condensate during the upwind-side ascent are strongly 94

warmed by latent heating and are, therefore, too buoyant to 95

descend on the leeward side. In contrast, parcels passing 96

below the cloud layer or in the region of the melting 97

layer are cooled by evaporation, sublimation and melting, 98

which leads to a small or even negative ∆θ. The latter, 99

therefore, descend more readily into the Rhine valley. 100

A schematic illustration of the vertical flow pattern is 101

provided in Fig. 1c. Note that the depicted parcels will not 102

have the same horizontal path on the upstream side, but 103

will ascend at different longitudes. A vertical “scrambling” 104

focussing on the positive buoyancy of air parcels generating 105

the condensate has been previously hypothesised by Smith 106

et al. (2003) based on a small trajectory sample for a 107
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south foehn case. This hypothesis is clearly confirmed by1

our investigations. The importance of latent cooling for air2

parcels arriving close to the foehn valley floor has been3

indicated in a few earlier studies (e.g., Mayr et al. 2004),4

but is quantitatively assessed for the first time in this study.5

Future studies should investigate the hypothesis of air parcel6

scrambling, the importance of latent cooling in other foehn7

events and address the implications for foehn air dynamics in8

more detail. It would also be important to perform a complete9

budget analysis of potential temperature and moisture along10

trajectories, as the conservation of these properties in the absence11

of diabatic processes is an important assumption in Lagrangian12

studies. In particular, a non-conservation of potential temperature13

along trajectories affects the “residual” potential temperature14

changes, i.e., related to radiative and mixing processes, and should15

therefore not strongly impact the major conclusions of this paper.16
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Frioude M, Furger M, Gröhn I, Gubser S, Gutermann T, Häberli C, Häller-60
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interactions in the Rhine valley during MAP IOP 15. Q. J. R. Meteorol. 78

Soc. 132: 3035–3058, doi:10.1256/qj.06.36. 79

Frick C, Seifert A, Wernli H. 2013. A bulk parameterization of 80

melting snowflakes with explicit liquid water fraction for the cosmo 81

model. Geoscientific Model Development 6(2): 1925–1939, doi:10.5194/ 82

gmd-6-1925-2013. 83

Gohm A, Mayr GJ, Fix A, Giez A. 2008. On the onset of bora and the 84

formation of rotors and jumps near a mountain gap. Q. J. R. Meteorol. Soc. 85

134: 21–46, doi:10.1002/qj.206. 86

Grell GA, Knoche R, Peckham SE, McKeen SA. 2004. Online versus offline 87

air quality modeling on cloud-resolving scales. Geophys. Res. Lett. 31: 88

L16 117, doi:10.1029/2004GL020175. 89

Grosvenor DP, King JC, Choularton TW, Lachlan-Cope T. 2014. Downslope 90
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