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ABSTRACT
In a prior paper, we considered the linear stability of magnetized jets that carry no net
electric current and do not have current sheets. In this paper, in addition to physically well-
motivated magnetic field structures, we also include the effects of jet shear. The jets we
study have finite thermal pressure in addition to having realistic magnetic field structures and
velocity shear. We find that shear has a strongly stabilizing effect on various modes of jet
instability. Increasing shear stabilizes the fundamental pinch modes at long wavelengths and
short wavelengths. Increasing shear also stabilizes the first reflection pinch modes at short
wavelengths. Increasing shear has only a very modest stabilizing effect on the fundamental
kink modes at long wavelengths; however, increasing shear does have a strong stabilizing
effect on the fundamental kink modes at short wavelengths. The first reflection kink modes
are strongly stabilized by increasing shear at shorter wavelengths. Overall, we find that the
combined effect of magnetic field and shear stabilizes jets more than shear alone. In addition
to the results from a formal linear stability analysis, we present a novel way of visualizing
and understanding jet stability. This gives us a deeper understanding of the enhanced stability
of sheared, magnetized jets. We also emphasize the value of our numerical approach in
understanding the linear stability of jets with realistic structure.
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1 IN T RO D U C T I O N

Jets arise quite frequently in energetic astrophysical systems. Ex-
tragalactic jets emerging from active galactic nuclei (AGN; Rees
1978) can span several tens of Kpc to several Mpc. Equally spec-
tacular jets emerge from young stars (Reipurth et al. 1998) and
these jets too are known to propagate several parsecs from their
source in young stellar objects (YSOs). X-ray binaries and gamma-
ray bursters (GRBs) are also known to be sources of jet activity.
While an observational elucidation of jet acceleration mechanisms
is lacking, theorists agree that strong magnetic fields play a role in
jet formation and acceleration (e.g. Lovelace 1976; Blandford &
Znajek 1977; Blandford & Payne 1982; Komissarov & McKinney
2007; McKinney & Narayan 2007; Komissarov & Barkov 2009;
McKinney & Blandford 2009). Observations of extragalactic jets
do not permit a direct measurement of the jet’s magnetic field, as a
result, one has to resort to an equipartition hypothesis. This is based
on an assumption that the jet’s magnetic pressure is in equipartition
with its thermal pressure.
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Observations of astrophysical jets indicate that they propagate
with unusually good stability, i.e. the jets manage to retain their
structural integrity over huge distances compared to their initial
radii. For example, jets from young stars should emerge on scales
that are comparable to the magnetospheres of YSOs (Ray 2012), yet
they propagate out to distances that can be ∼105–107 times larger
than their natal radii. For AGN jets, this ratio becomes even larger,
reaching 109. Comparing these ratios to the propagation lengths of
terrestrial jets, we find that terrestrial jets usually destabilize over
distances of tens to hundreds of jet radii. Plasma experiments have
shown that magnetic fields may help in stabilizing jets; however,
magnetic fields can also be the source of further instabilities. For
this reason, this paper looks to shear in the jets’ channel as a source
of stabilization for magnetized astrophysical jets.

The traditional method for studying the stability of astrophysi-
cal jets has been linear stability analysis. Simpler stability analyses
result in linearized systems of equations with analytical solutions.
Usually, these solutions turn out to be Bessel functions or hyperge-
ometric functions. This quest for analytical tractability is desirable
because it permits many examples of jets to be explored with mini-
mal computational resources and minimal computer coding. Unfor-
tunately, making this choice also forces the theorist to make further
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compromises. For example, one may choose simpler top-hat veloc-
ity profiles for the jet. Likewise, simple structures are sought for
the magnetic field. Attempts to consider non-trivial magnetic field
profiles within the jets have usually forced theorists to consider
pressure-free jets. However, thermal effects are known to produce
an isotropic pressure profile which has a significant stabilizing role
in plasmas. Going beyond these simplifying assumptions required
breaking free of a dependence on analytical solutions, i.e. the linear
systems that arise from stability analysis have to be solved numer-
ically. This requires a deeper investment in computer codes and
computational resources. A fully numerical approach to stability
analysis was first attempted by us in Kim et al. (2015) who stud-
ied jets with very special magnetic field properties suggested by
Gourgouliatos et al. (2012). While our prior study included very so-
phisticated magnetic field topologies, the velocity distribution was
still restricted to a top-hat profile. In this paper, we go past that
restriction.

As seen from the previous paragraphs, prior authors have stud-
ied jet stability with certain limiting approximations. For example,
some authors have only considered top-hat velocity profiles (Hardee
1979, 1982; Cohn 1983; Payne & Cohn 1985; Istomin & Pariev
1996; Begelman 1998; Lyubarskii 1999). Other authors have stud-
ied simpler magnetic field structures, restricting attention to either
axial or toroidal magnetic fields in the jets (Istomin & Pariev 1994,
1996; Narayan et al. 2009). A few early practitioners did try to take
a partially numerical approach to jet stability (Ferrari, Massaglia &
Trussoni 1982, Ferrari & Trussoni 1983; Appl & Camenzind 1992;
Appl, Lery & Baty 2000). Some recent work has tried to include
more complex magnetic field geometries (Bodo et al. 2013) but that
frequently comes at the expense of restricting the study to a con-
sideration to pressure-free jets, which is not realistic. In Kim et al.
(2015), we started a line of inquiry which removed many of these
simplifying approximations. For example, the jets that were studied
in our prior paper were quite realistic because they included complex
magnetic field geometries while retaining finite thermal pressure in
the jets. Realistic jets also could very likely have sheared velocity
profiles. The first goal of this paper is to study the stability of jets
with realistic magnetic field structure, realistic pressure support and
realistic velocity shear. We realize, therefore, the perturbed jets that
emerge from our stability analysis will have very complicated per-
turbation structure. The second goal of this paper is, therefore, to
present a novel way of visualizing and understanding jet stability in
the linear regime. While prior stability analyses were entirely ana-
lytical and based on the structure of the Bessel function, the work
presented here is mostly numerical. The third goal of this paper is
to emphasize the value of this numerical approach in understanding
the linear stability of jets with realistic structure.

In this paper, we present a novel way of visualizing and under-
standing jet stability. In our approach, it is better to focus on a given
family of modes. The mode families that we are interested in are
the fundamental mode of the pinch instability, the first reflection
mode of the pinch instability, the fundamental mode of the kink
instability and the first reflection mode of the kink instability. As a
result, each of those modes is given its own section and is studied
independently. Section 2 describes the unperturbed jet structure of
the sheared, magnetized jets without surficial current sheets. It also
mentions our stability analysis methods for the sake of complete-
ness. Section 3 describes the stability of the fundamental mode of
the pinch instability and shows that it is possible to arrive at a deeper
understanding of its stability via the visual methods developed here.
Section 4 does the same for the first reflection mode of the pinch in-
stability. Section 5 presents a study of the fundamental mode of the

kink instability and Section 6 focuses on the first reflection mode of
the kink instability. Section 7 provides discussion and conclusions.

2 D E S C R I P T I O N O F T H E U N P E RT U R B E D J E T
S T RU C T U R E A N D O U R STA B I L I T Y A NA LY S I S

This paper is a sequel to Kim et al. (2015). Consequently, all the
notation are kept entirely consistent between this paper and its
prequel. It is very important to catalogue the structure of the jets
that we consider here. All the magnetized jets that we consider here
have zero net electric current in them. This is achieved by having
a special form of the magnetic field, as shown by Gourgouliatos
et al. (2012). The special form of magnetic field effectively replaces
surface currents with a current density that is distributed across
the volume of the jet. Fig. 1(a), which is drawn from Gourgouliatos
et al. (2012), shows the axial and toroidal magnetic field in the jet as
a function of radius. Note that the magnetic field is purely axial on-
axis; however, the toroidal magnetic field becomes more dominant
as one moves outwards from the axis. This form of magnetic field
was initially inspired by tokamak and spheromak studies and has a
net zero magnetic field at the boundary of the jet. The end result is
that, unlike prior studies on the stability of magnetized jets, there
is no concentrated current sheet at the surface of the jets that we
consider here. While we do not consider resistive effects in this
paper, one of the beneficial consequences of the magnetic field
profile that is used in this study is that there are no concentrated
resistive instabilities at the boundaries of the jets. The absence
of concentrated current sheets at the boundaries of the jets might
also have positive consequences for numerical simulations. In this
paper, we find that the shear in the jets’ axial velocity also plays an
extremely important role in stabilizing the jets. For that reason, it is
important to be able to parametrize the jets’ axial velocity. We do
this by specifying the jets’ velocity with the formula

vz0 (r) = vz;max

(
1 − a

(
r

rj

)2
)

.

In the above formula, vz;max is the maximal on-axis velocity of the
jets, rj is the jets’ radius and is usually set to unity. The parameter
‘a’ ranges from 0 for a top-hat velocity profile to 0.9 for a jet
whose axial velocity almost blends in with the ambient velocity.
Fig. 2 shows the four velocity profiles considered in this paper with
a = 0, 0.3, 0.6, 0.9.

Please note that Rayleigh (1896) had found that such parabolic
profiles are stable for incompressible Couette flow and that is our
intuitive motivation for thinking that sheared jets might have en-
hanced stability. It is quite possible that even a jet that starts off
with a top-hat profile might entrain ambient material through its
boundary, thus reaching a parabolic velocity profile. Furthermore,
jet launching mechanisms need to tie into the magnetic field struc-
ture at the central black hole, thus giving rise to a more sheared
profile.

The jets that we consider are all pressure-matched with their am-
bient medium. The ambient medium is uniform and unmagnetized,
so that the thermal pressure in the ambient medium matches the
total (gas + magnetic) pressure at the surface of the jet. All linear
stability analyses are based on jets with a constant entropy in the
unperturbed jet. In keeping with that trend, we consider the entropy
in the jet fluid to be a constant. Unlike most prior stability analyses,
the magnetic field in our jets has a non-trivial structure, see Fig. 1(a).
The total unperturbed pressure at the jet boundary must balance the
gas pressure in the ambient medium. However, Fig. 1(a) shows that
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Figure 1. (a) From Gourgouliatos et al. (2012), shows the toroidal magnetic field (red solid line) and the axial field (blue dashed line) as a function of the
jet radius. Note that the fields are zero at the jet boundary, resulting in jets that do not have a current sheet at the boundary. (b) Shows the corresponding gas
pressure in the jet as a function of jet radius.

the jet’s magnetic pressure varies with jet radius. As a result, force
balance in the radial direction requires the gas pressure to also vary
with jet radius and this variation in the gas pressure is shown in
Fig. 1(b). The varying gas pressure, along with the constant en-
tropy requirement, also requires the density to vary as a function
of radius. In this paper, we will be using some of these parameters
as measured at the jet axis. Thus, one parameter that catalogues
different jets is given by η = ρj/ρa, where ρj is the jet density as
measured at the jet axis and ρa is the uniform external density in
the ambient medium. The on-axis gas pressure is also determined
by pressure-balance considerations. The pressure, however, varies
as a function of radius. In such a jet, it is important to have some
way of defining the mean Mach number. We define our mean Mach
number by a scaled ratio of the jet kinetic energy to the jet thermal
energy. The definition given below is such that when the jet density,
velocity and pressure are constant (i.e. jet with top-hat profile), the
equation below reduces to the Mach number. Our definition of the
jet Mach number is, therefore, given by

M =

√√√√√√√√
rj∫
0

ρ0 (r) v2
z0 (r) rdr

γ
rj∫
0

P0 (r) rdr

.

In the above equation, ρ0(r) is the unperturbed density profile
across the jet; vz0(r) is the unperturbed velocity profile across the
jet; P0(r) is the unperturbed pressure profile across the jet and γ

is the polytropic index. In this paper, we adopt a novel way of
visualizing jet stability and we will always inter-compare jets with
the same Mach number, where the Mach number is defined by
the above equation. For magnetized jets, the plasma-β also plays
an important role in determining jet stability. The on-axis plasma-
β was used in the previous paper (Kim et al. 2015) and we follow the
same definition here. The extent of the shear, as parametrized by the
value of ‘a’ in Fig. 2, constitutes the fourth parameter specifying the
jet. Thus, any jet in our simulations is specified by four parameters
– the density ratio η, the Mach number ‘M’, the plasma-β and the
extent of the shear ‘a’.

In Sections 2 and 3 of Kim et al. (2015), we have already described
our numerically motivated strategy for carrying out stability analy-
ses of jets with realistic density, pressure and magnetic field profiles.
As in our previous study, we study perturbations to the jet’s flow
variables of the form δf (t, r, φ, z) = f (r) exp(iωt − imφ − ikz),
where m = 0 or 1 modes, i.e. for pinch or kink modes. For our
purposes, we keep the wavenumber ‘k’ real, while allowing the an-
gular frequency, ‘ω’, to be complex. The real part of the angular
frequency ‘ω’ gives us the angular oscillation frequency of the jet,
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Figure 2. Shows velocity profile of the jet as a function of scaled radius.
Note that even for the hydrodynamic jet, the Mach number is not a constant
for non-zero values of ‘a’. For the magnetized jet, the jet density and pressure
can also very as a function of radius. As a result, the connection with a single
‘Mach number’ becomes even more tenuous. For want of an alternative, we
still parametrize jet properties with respect to the on-axis Mach number.

while its imaginary part gives us the growth rate. Specification of
the functions f (r) for each of the flow variables in the jet gives us
the eigenfunction of the jet. Our formulation is very general and is
brought over unchanged from our previous paper to this paper. For
that reason, we do not repeat our description of how the stability
analysis was carried out in this paper, instead we refer the inter-
ested reader to our prior paper. The novel element in this paper is
the inclusion of shear in the jets. However, we point out that the
Sections 2 and 3 of Kim et al. (2015) already describe the inclusion
of shear in the jet’s profile even though the stability analysis in the
previous paper was carried out for jets with top-hat velocity profiles.

The jets that we consider in this paper have M = 4 and η = 0.1; i.e.
they are supersonic light jets. The jets have a range of values of ‘a’,
leading to several different values of shear. They also have a range
of values of ‘β’, leading to different amounts of magnetic pressure.
The different values of shear that we consider correspond to a = 0
(top-hat velocity profile), a = 0.3 (mild shear), a = 0.6 (modest
shear) and a = 0.9 (strong shear). We also explore values of ‘β’
corresponding to β = ∞ (no magnetic field), β = 1 (equipartition
magnetic field) and β = 0.5 (strong magnetic field). Taken together,
this constitutes 12 different light, supersonic jets whose stability we
explore here with our linear stability analysis.

Numerous studies of the stability of astrophysical jets have shown
that they have at least some instability. (In fact, the presence of some
instabilities might even be a good thing if the waves associated with
the instabilities cause particles to be accelerated in the jet, thereby
enabling the jets to shine with radio emission.) For one to say that
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the stability of a jet is improved by the inclusion of shear or magnetic
field, one has to specify some criterion for saying that the stability
is improved. Consider a jet that is perturbed with an unstable mode
with wavenumber ‘k’ having a complex frequency ω = ωR + iωI

with ωI < 0. Consequently, τI = 1/|ωI | measures the time in which
the unstable jet undergoes one e-folding of growth. We can say
that despite this instability, the jet is quite stable if it can propagate
several (hundreds of) jet radii before the instability undergoes one e-
folding of growth. We standardize these considerations by referring
to jets with top-hat velocity profiles. If rj is the jet radius and vz;max

is the jet velocity, then the time taken by the jet to propagate χ jet
radii is given by T = χrj/vz;max. For a specified χ , say χ = 400,
we say that the instability will not destabilize the jet if τ ≥ T . This
is equivalent to saying that

ωI rj

cs
≤ M

χ
,

where ‘M’ is the Mach number of the jet and cs is the sound speed
in the jet. For this paper, we consider jets with a Mach number of
4 and we use χ = 400, i.e. a jet is said to be ‘quite stable’ with
respect to perturbations, if the jet can propagate 400 jet radii before
that perturbation undergoes growth by one e-folding. Comparison
with the propagation of terrestrial jets, which destabilize in less
than a 100 jet radii, indicates that our criterion is well designed.
Based on this criterion, a jet is quite stable if ωI rj/cs ≤ 10−2. For
very highly magnetized jets, it is possible that the sound speed cs

should be replaced by the Alfven speed of the jet material. However,
in this work, we do not consider jets that are very highly magne-
tized; besides, observers’ biases usually favour jets that are closer
to equipartition. Consequently, it is optimal to use just the sound
speed.

3 T H E S TA B I L I T Y O F T H E F U N DA M E N TA L
M O D E O F T H E PI N C H I N S TA B I L I T Y

Fig. 3 shows the angular frequency (solid line) and temporal growth
rate (dashed line) as a function of the wavenumber ‘k’ for the
fundamental mode of the pinch instability. Three panels are shown
in Fig. 3. Fig. 3(a) corresponds to unmagnetized jets (β = ∞) and
shows four different values of shear, corresponding to a = 0, 0.3,
0.6 and 0.9. Fig. 3(b) corresponds to jets with equipartition between
the thermal and magnetic pressure (β = 1) and the same four values
of ‘a’, corresponding to increasing shear from a = 0 to 0.9. Fig. 3(c)
corresponds to jets with on-axis magnetic pressure that is twice as
strong as the on-axis gas pressure (β = 0.5) and again the same
four values of ‘a’. In all, Fig. 3 shows the linear stability of the
fundamental mode to pinch perturbations for 12 different models
for sheared jets with various levels of magnetization. For values
of wavenumber ‘k’ with ωI rj/cs ≤ 10−2, the jets were assessed to
be quite stable. This threshold is shown via a black dotted line in
Fig. 3. (The same dotted line is also used for the remaining figures
in this paper whenever we show a dispersion analysis.) Using our
threshold of ωI rj/cs ≤ 10−2, it is very easy to see from Figs 3(a)–
(c) that increasing shear makes the jets quite stable to fundamental
modes of the pinch instability for a substantial range of short and
long wavelengths.

Fig. 3(a), corresponding to four unmagnetized jets with increas-
ing shear, makes the previous point very vividly. We see that with
increasing shear the short wavelength modes as well as long wave-
length modes are increasingly stabilized. Note from Fig. 3(a) that
all the fundamental pinch modes are unstable at krj = 0.6. We show
this wavenumber by the short vertical arrow in Fig. 3(a). This corre-
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Figure 3. Shows the angular frequency (solid line) and temporal growth
rate (dashed line) versus longitudinal wavenumber k for pinching (m = 0)
fundamental mode of a non-magnetized jet. In (a), the jet has M = 4 and
η = 0.1. Increasing values of the parameter ‘a’ indicate increasing shear,
with a = 0 (no shear) to a = 0.9 (maximal shear). (b) Shows the same
information for a jet with b = 1 (i.e. magnetic field is in equipartition
with gas pressure). (c) Shows the same information for a jet with b = 0.5
(magnetically dominated).

sponds to a situation where the wavelength is about 10.5 jet radii. It
has been anticipated by (Ferrari et al. 1982) that short wavelengths
are indeed stabilized by shear. The finding that long wavelengths are
also stabilized by shear is indeed novel and based on our detailed
stability analysis.

Payne and Cohn (1985) have already used a visualization of the
pressure to develop further insight into jet stability. They were able
to show that the pressure fluctuations give us new insights into the
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732 J. Kim et al.

Figure 4. (a) Shows the pressure variation in a non-magnetized jet with a top-hat profile. (b) Shows the pressure variation in a non-magnetized jet with a = 0.3
(mild shear). (c) Shows the pressure variation in a non-magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure variation in a non-magnetized jet
with a = 0.9 (strong shear). For all the cases in Fig. 4, we have krj = 0.6. In all the cases, the jet’s boundary has a fluctuation that is 20 per cent of the jet’s
radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.

Figure 5. (a) Shows the pressure variation in a strongly magnetized jet (b = 0.5) with a top-hat profile. (b) Shows the pressure variation in a strongly magnetized
jet with a = 0.3 (mild shear). (c) Shows the pressure variation in a strongly magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure variation in a
strongly magnetized jet with a = 0.9 (strong shear). For all the cases in Fig. 5, we have krj = 0.3. In all the cases, the jet’s boundary has a fluctuation that is 20
per cent of the jet’s radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.

nature of fundamental and reflection modes. Since that early paper,
few authors seem to have used the pressure variable to gain insights
on jet stability. We have found that the fluctuations in the pressure
variable give us substantial further insight into the stabilizing role of
shear and certain configurations of magnetic fields. Our presentation
is novel in the sense that we visualize this variable for jets with
different levels of shear in a way where the variables can be directly
inter-compared. This allows us to obtain a deeper understanding of
the role of increasing shear in stabilizing the jets for a given mode
of oscillation. In this section, we visualize the fluctuations in the
pressure variable for fundamental modes of the pinch instability.
We do this in subsequent sections for each of the different modes
of oscillation of the jet that are of interest to us.

To obtain a physical understanding of the results from Fig. 3, let
us look at Fig. 4. Fig. 4 shows the pressure fluctuation in the jet and
its ambient when the boundary of the jet has a 20 per cent radial

fluctuation. We show iso-pressure perturbation contours in Fig. 4
where the values of the contour lines can be obtained by matching
the colour of the contour to the colour bar to the right of each figure.
Since the undulations in the jets’ boundary are communicated to
the ambient medium via sound waves, it is appropriate to look at
the pressure variable in the two media (i.e. the jet and its ambient
medium). The whole process of a jet undergoing dynamical insta-
bility can be thought of as a process of converting the beam energy
of the jet into pressure and velocity fluctuations in the ambient
medium. In that sense too, the pressure is the appropriate variable
to image in order to arrive at a physical picture of jet stability. We
show the maximally unstable modes with krj = 0.6. The perturbed
boundary of the jet is also shown in Fig. 4, just to provide the reader
with a point of physical reference. However, please note that the
boundary perturbation is not set by linear stability analysis. We
conjecture that if the boundary perturbation is set to a given value,
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Figure 6. (a) Shows the pressure variation in a strongly magnetized jet (b = 0.5) with a top-hat profile. (b) Shows the pressure variation in a strongly magnetized
jet with a = 0.3 (mild shear). (c) Shows the pressure variation in a strongly magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure variation in a
strongly magnetized jet with a = 0.9 (strong shear). For all the cases in Fig. 6, we have krj = 0.1. In all the cases, the jet’s boundary has a fluctuation that is 20
per cent of the jet’s radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.

then the pressure perturbations in different jets with different values
of shear ‘a’ but with all other parameters held fixed can indeed be
inter-compared. Consequently, Fig. 4(a) shows the pressure for
an unmagnetized jet with a = 0; Fig. 4(b) shows the pressure for
an unmagnetized jet with a = 0.3; Fig. 4(c) shows the pressure
for an unmagnetized jet with a = 0.6; lastly, Fig. 4(d) shows the
pressure for an unmagnetized jet with a = 0.9. The Mach number,
density ratio and perturbed wavelength are indeed the same for all
four panels in Fig. 4. The colour scale is indeed the same for all the
panels in Fig. 4 so that the pressure contours can be inter-compared
across all the panels within that figure. In other words, note that the
range of values associated with the four colour bars is the same for
the four panels in Fig. 4.

Fig. 4(a) shows that the pressure perturbations are strong within
a jet with a top-hat velocity profile. Furthermore, they are organized
like sound waves in a tube. Please focus on the jet’s channel in this
paragraph; i.e. please focus on the fluid inside the jet. The inclusion
of even a mild shear in Fig. 4(b) changes the picture. We now
see that the pressure perturbations are concentrated at the centre
of the jet. However, the boundary of the jet’s channel experiences
smaller perturbations. Fig. 4(c) corresponds to a jet with a modest
shear and we see that the pressure perturbations are strongest in a
smaller region inside the jet’s channel. Fig. 4(d) corresponds to a
jet with very strong shear and we see that the strongest pressure
perturbations in that jet are confined to a narrow region along the
jet’s axis. Since the outer regions of the jet’s channel are strongly
sheared, we see that the pressure fluctuations are washed out by the
presence of the shear. Realize from Fig. 2 that even the strongly
sheared jet has a central velocity profile that does not experience
much shear. Consequently, it is almost as if the flow close to the
jet’s axis in Fig. 4(d) forms a core of a jet with a higher and flatter
velocity and the pressure fluctuations within the jet’s channel are

concentrated on-axis. We also invite the reader to cross compare
the colours for the pressure inside the jets’ channel in Figs 4(c) and
(d) to the corresponding colours for the pressure inside the jets’
channel in Figs 4(a) and (b). By comparing the colours, as well as
the range of colours, in the different panels in Fig. 4, we see that
the pressure fluctuations inside the jets’ channel are larger in the
unsheared and mildly sheared configurations than in the strongly
sheared configurations.

Eventually, a stability analysis of jets should lead us to a better
understanding of how the jet loses energy to its ambient medium
and, therefore, destabilizes. In the previous paragraph, we focused
exclusively on the pressure fluctuations within the jets’ channel. Let
us now revisit Fig. 4 with an emphasis on the pressure fluctuations
outside the jets’ channel, i.e. in the ambient medium. The previous
paragraph has shown us that increasing shear results in smaller pres-
sure fluctuations reaching the boundary of the jet. These pressure
fluctuations should trigger pressure perturbations in the ambient
medium. We now see that the pressure fluctuations in the ambient
medium are stronger for the unsheared and mildly sheared jets in
Figs 4(a) and (b), respectively. We also see that the pressure fluctua-
tions in the ambient medium are weaker for the modest and strongly
sheared jets in Fig. 4(c) and (d). Therefore, we understand that the
fundamental pinch modes of jets that are strongly sheared lose less
sound energy to their ambient medium than jets that have mild or
no shear. Clearly, this is a far-reaching insight which enables us to
understand why long wavelength and also short wavelength modes
were stabilized in Fig. 3(a) with increasing shear. Observe too from
Fig. 3(b) that the jets with equipartition magnetic field also show
all the same trends as Fig. 3(a). Comparing Fig. 3(b) to Fig. 3(a),
which Fig. 4 in the backdrop, has made it easy to understand the
trends in Fig. 3(b) and we do not show the corresponding pressure
profiles.
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Fig. 3(c) shows the fundamental modes for the sheared and
strongly magnetized jets. By comparing the a = 0.3, 0.6 and 0.9
cases, we see an overall trend towards increasing stabilization with
increasing shear. By comparing these cases with the a = 0 case
in Fig. 3(c), we see that the strong magnetic field is effective in
stabilizing the short wavelength modes. This makes sense because
the magnetic field that we used has a strong toroidal component.
However, the magnetic field is not effective in stabilizing the long
wavelength modes, which are usually more damaging to jet stabil-
ity. Note from Fig. 3(c) that all the fundamental pinch modes are
unstable at krj = 0.3. We show this wavenumber by the short vertical
arrow in Fig. 3(c). In the next paragraph, we analyse the pressure
fluctuations for the four jets from Fig. 3(c) at krj = 0.3. It is also
valuable to compare and contrast Fig. 3(c) with Figs 3(a) and (b).
Realize that Figs 3(a) and (b) correspond to no or modest magnetic
field strengths. In such a situation, we see that increasing shear
always results in increasing stabilization of the jet’s pinch modes.
This follows the expected trend for hydrodynamic sheared jets. In
Fig. 3(c), the magnetic field dominates the dynamics. Viewing the
a = 0 and 0.3 cases in Fig. 3(c), we realize that slightly increased
shear may indeed make a strongly magnetized jet somewhat less
stable. In other words, the stabilization from increasing shear and
increasing magnetic field do not always act cumulatively so as to
enhance jet stability. The a = 0.6 and 0.9 cases in Fig. 3(c) do,
however, show that when the shear becomes large, it does produce
enhanced stability even in strongly magnetized jets. This is a very
desirable result.

Fig. 5 shows the pressure perturbations in the four jets from
Fig. 3(c) for an unstable wavenumber given by krj = 0.3, i.e. please
realize that this is a longer wavelength than the one shown in Fig. 4.
Fig. 5(a) corresponds to a top-hat velocity profile. Even so, we see
that the pressure fluctuations within the jet’s channel are confined
to a central region. Please compare Fig. 5(a) for the magnetized
jet to Fig. 4(a) for the unmagnetized jet and note that the pressure
fluctuations in Fig. 5(a) are confined to a small region close to
the jet’s axis. To understand why, please focus on the magnetic
field structure in Fig. 1. We see that the toroidal component of the
magnetic field becomes stronger at larger jet radii. This confines
the pressure fluctuations to a smaller fraction of the jet’s channel.
Fig. 5(b) shows the same trends as Fig. 5(a). Figs 5(c) and (d)
correspond to jets with increasing shear; they show even smaller
pressure fluctuations. We see now that the combination of strong
magnetic field and strong shear has resulted in milder pressure
fluctuations both within the jets’ channel as well as in the ambient
region. We therefore see that the combination of increasing magnetic
field and increasing shear has a strongly stabilizing influence on
the fundamental pinch modes of the light, high Mach number jets
studied here.

The curious reader might also observe from Fig. 3(c) that the
maximum stabilization due to increasing shear occurs at krj = 0.1.
Consequently, she/he might want to see a figure that is analogous
to Fig. 5, but at krj = 0.1. This is shown in Fig. 6. Note that
Fig. 6 shows all the same trends as Fig. 5. As in Figs 5(d) and 6(d)
shows us that the combination of strong magnetic field and strong
shear has resulted in milder pressure fluctuations both within the
jets’ channel as well as in the ambient region. Comparing Fig. 6 to
Fig. 5 makes the enhanced stabilization at longer wavelengths more
evident.

In a few cases, we have also explored the stability of the funda-
mental pinch mode with a = 0.95 and found that it is even more
stable than the a = 0.9 case. Unfortunately, our search strategy is
based on identifying unstable modes in the complex plane. (Please

10-3

10-2

10-1

100

101

102

10-1 100 101

ω
r j/

c s

krj

a=0
a=0.3
a=0.6
a=0.9

10-3

10-2

10-1

100

101

102

10-1 100 101

ω
r j/

c s

krj

a=0
a=0.3
a=0.6
a=0.9

10-3

10-2

10-1

100

101

102

10-1 100 101

ω
r j/

c s

krj

a=0
a=0.3
a=0.6
a=0.9

(a)

(b)

(c)

Figure 7. Shows the angular frequency (solid line) and temporal growth
rate (dashed line) versus longitudinal wavenumber k for pinching (m = 0)
first reflection mode of a non-magnetized jet. In (a), the jet has M = 4
and η = 0.1. Increasing values of the parameter ‘a’ indicate increasing
shear, with a = 0 (no shear) to a = 0.9 (maximal shear). (b) Shows the
same information for a jet with b = 1 (i.e. magnetic field is in equipartition
with gas pressure). (c) Shows the same information for a jet with b = 0.5
(magnetically dominated).

see fig. 1 of Kim et al. 2015 and the associated discussion therein.)
When the modes become stable, they reside in the real plane. For
that reason, we cannot describe the structure of the jet for the a = 1.0
case because the trends suggest that it might be completely stable
to pinch instability. It is also important to realize that when the flow
is completely stable, |ω − vz0(r)k| becomes zero at certain radial
locations. Analytical search strategies can indeed integrate through
such locations. However, |ω − vz0(r)k| appears in the denominator
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Figure 8. (a) Shows the pressure variation in a non-magnetized jet with a top-hat profile. (b) Shows the pressure variation in a non-magnetized jet
with a = 0.3 (mild shear). (c) Shows the pressure variation in a non-magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure variation in
a non-magnetized jet with a = 0.9 (strong shear). For all the cases in Fig. 8, we have krj = 1. In all the cases, the jet’s boundary has a fluctuation that is
20 per cent of the jet’s radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.
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Figure 9. (a) Shows the pressure variation in a strongly magnetized jet (b = 0.5) with a top-hat profile. (b) Shows the pressure variation in a strongly magnetized
jet with a = 0.3 (mild shear). (c) Shows the pressure variation in a strongly magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure variation in a
strongly magnetized jet with a = 0.9 (strong shear). For all the cases in Fig. 9, we have krj = 1.5. In all the cases, the jet’s boundary has a fluctuation that is 20
per cent of the jet’s radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.
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of the algebraic equations in our numerical strategy. As a result,
the numerical approach, as designed by us, becomes unsuitable for
finding stable modes (without perhaps substantial modification).

In Section 4.1 of Kim et al. (2015), we had concluded that the
imposed current-sheet-free magnetic field partially suppresses the
KH-instability and does not introduce strong CD-instabilities. The
reasons are provided in the prior paper and they are also applicable
to this paper.

4 THE STABILITY O F THE FIRST
R E F L E C T I O N M O D E O F T H E PI N C H
INSTABILITY

Fig. 7 shows the angular frequency (solid line) and temporal growth
rate (dashed line) as a function of the wavenumber ‘k’ for the first
reflection mode of the pinch instability. Three panels are shown in
Fig. 7. Fig. 7(a) corresponds to unmagnetized jets (β = ∞) and
shows four different values of shear, corresponding to a = 0, 0.3,
0.6 and 0.9. Fig. 7(b) corresponds to jets with equipartition between
the thermal and magnetic pressure (β = 1) and the same four values
of ‘a’, corresponding to increasing shear from a = 0 to 0.9. Fig. 7(c)
corresponds to jets with on-axis magnetic pressure that is twice as
strong as the on-axis gas pressure (β = 0.5) and again the same
four values of ‘a’. In all, Fig. 7 shows the linear stability of the
first reflection mode to pinch perturbations for 12 different models
for sheared jets with various levels of magnetization. Using our
threshold of ωI rj/cs ≤ 10−2, it is very easy to see from Figs 7(a)–
(c) that increasing shear makes the jets quite stable to the first
reflection modes of the pinch instability for a substantial range of
short wavelengths. The nature of the first reflection mode is such that
it does not destabilize the jet at long wavelengths anyway. So, when
considering reflection modes, we are only interested in enhanced
stabilization of short wavelength modes.

Realize, at the onset, that the reflection modes only destabilize
the jets at shorter wavelengths. Consequently, we can only talk
about improved stability at short wavelengths when considering
reflection modes. Please cross-compare Figs 3(a) and 7(a). We see
that increasing shear results in a smaller island of instability for both
the fundamental mode and the first reflection mode of the pinch
instability. Cross-comparing Figs 3(b) and 7(b) shows the same
trend continues when the magnetic pressure is in equipartition with
the gas pressure. In Fig. 7(c), we see most of that trend continued.
However, we see, as before, that the presence of shear is more
effective at stabilizing short wavelength modes than the presence of
a strong magnetic field.

The pressure fluctuations in the first reflection modes of the pinch
instability are also shown for the unmagnetized jets with wavenum-
ber krj = 1 in Fig. 8. As in Fig. 4, we see that increasing shear causes
the pressure fluctuations within the jets’ channel to be concentrated
closer to the axis of the jet, i.e. observe that the contour intervals
have a smaller spacing in the radial direction in-close to the jets’
axis and that this trend increases with increasing shear. In Fig. 8(d),
we see that the outer parts of the jet’s channel are mostly free of
pressure fluctuations. Only the part of the jet that is closest to the
jet’s axis has a concentration of pressure contours indicating that
all the pressure fluctuations in Fig. 8(d) are concentrated close to
the jet’s axis. We can also turn our attention to the pressure fluctu-
ations in the ambient medium that surrounds the jets in Fig. 8. The
strongly sheared jet in Fig. 8(d) shows that the sound wave fluctu-
ations that propagate into the ambient medium are weaker than the
sound waves in the ambient media of Figs 8(a)–(c). We, therefore,
conclude that the presence of shear reduces the amount of energy
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Figure 10. Shows the angular frequency (solid line) and temporal growth
rate (dashed line) versus longitudinal wavenumber k for kink (m = 1)
fundamental mode of a non-magnetized jet. In (a), the jet has M = 4 and
η = 0.1. Increasing values of the parameter ‘a’ indicate increasing shear,
with a = 0 (no shear) to a = 0.9 (maximal shear). (b) Shows the same
information for a jet with b = 1 (i.e. magnetic field is in equipartition
with gas pressure). (c) Shows the same information for a jet with b = 0.5
(magnetically dominated).

that is imparted to the ambient medium by the first reflection modes
of the pinch instability.

The pressure fluctuations in the first reflection modes of the pinch
instability are also shown for the strongly magnetized jets with
wavenumber krj = 1.5 in Fig. 9. Please compare Fig. 9 to Fig. 8 to
realize that all the trends that we saw in the unmagnetized jets are
also present in the strongly magnetized jets.
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Stability of current-sheet-free sheared jets 737

Figure 11. (a) Shows the pressure variation in a non-magnetized jet with a
top-hat profile. (b) Shows the pressure variation in a non-magnetized jet with
a = 0.3 (mild shear). (c) Shows the pressure variation in a non-magnetized
jet with a = 0.6 (modest shear). (d) Shows the pressure variation in a non-
magnetized jet with a = 0.9 (strong shear). For all the cases in Fig. 11, we
have krj = 0.6. In all the cases, the jet’s boundary has a fluctuation that is
20 per cent of the jet’s radius. The pressures are all on the same scale so that
the pressures across panels within a figure can be inter-compared.

Our overall conclusion from Sections 3 and 4 is that shear has
a stabilizing influence on both the long and the short wavelength
modes for the pinch instability. This enhanced stability extends to
fundamental as well as first reflection modes. It may, therefore,
be expected that the second and higher reflection modes of the
pinch instability show similar stabilization. We have also shown

Figure 12. (a) Shows the pressure variation in a strongly magnetized jet
(b = 0.5) with a top-hat profile. (b) Shows the pressure variation in a strongly
magnetized jet with a = 0.3 (mild shear). (c) Shows the pressure variation in
a strongly magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure
variation in a strongly magnetized jet with a = 0.9 (strong shear). For all
the cases in Fig. 12, we have krj = 0.7. In all the cases, the jet’s boundary
has a fluctuation that is 20 per cent of the jet’s radius. The pressures are all
on the same scale so that the pressures across panels within a figure can be
inter-compared.
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Figure 13. Shows the angular frequency (solid line) and temporal growth
rate (dashed line) versus longitudinal wavenumber k for kink (m = 1) first
reflection mode of a non-magnetized jet. In (a), the jet has M = 4 and η = 0.1.
Increasing values of the parameter ‘a’ indicate increasing shear, with a = 0
(no shear) to a = 0.9 (maximal shear). (b) Shows the same information for
a jet with b = 1 (i.e. magnetic field is in equipartition with gas pressure). (c)
Shows the same information for a jet with b = 0.5 (magnetically dominated).

that for the same perturbation amplitude, the strongly sheared jets
impart a smaller fraction of the jet’s kinetic energy to the ambient
medium.

5 T H E S TA B I L I T Y O F T H E F U N DA M E N TA L
M O D E O F T H E K I N K IN S TA B I L I T Y

Fig. 10 shows the angular frequency (solid line) and temporal
growth rate (dashed line) as a function of the wavenumber ‘k’ for the

fundamental mode of the kink instability. Three panels are shown
in Fig. 10. Fig. 10(a) corresponds to unmagnetized jets (β = ∞)
and shows four different values of shear, corresponding to a = 0,
0.3, 0.6 and 0.9. Fig. 10(b) corresponds to jets with equipartition
between the thermal and magnetic pressure (β = 1) and the same
four values of ‘a’, corresponding to increasing shear from a = 0 to
0.9. Fig. 10(c) corresponds to jets with on-axis magnetic pressure
that is twice as strong as the on-axis gas pressure (β = 0.5) and
again the same four values of ‘a’. In all, Fig. 10 shows the linear
stability of the fundamental mode to kink perturbations for 12 dif-
ferent models for sheared jets with various levels of magnetization.
Using our threshold of ωI rj/cs ≤ 10−2, it is very easy to see from
Figs 10(a)–(c) that increasing shear makes the jets quite stable to
fundamental modes of the kink instability for a substantial range of
short wavelengths.

It is well known in the literature (Begelman 1998; Lyubarskii
1999; Appl et al. 2000) that the long wavelength modes of the kink
instability can be more destabilizing (destructive) to jets than the
pinch instability. In Fig. 3, we showed that the long as well as the
short wavelength modes of the pinch instability are progressively
stabilized by increasing shear. From Fig. 10, we see that the long
wavelength modes of the kink instability are less affected by the
presence of shear. In all three panels of Fig. 10, we see that only the
a = 0.9 jet shows improved stability at long wavelengths because
of the presence of shear. Even then, the improvement is only by a
small factor. The long wavelength kink instability is a body mode,
i.e. the entire body of the jet is displaced from one side of the
axis to another. As a result, the internal shear cannot do much to
stabilize it.

From Figs 10(a) and (b), we see that the fundamental mode of the
kink instability is indeed strongly stabilized at short wavelengths
due to the presence of increasing shear. Fig. 10(c) shows that the
strong magnetic field competes with the shear at short wavelength in
stabilizing the fundamental mode of the kink instability. However,
even in Fig. 10(c), we see that the strongly sheared jet shows im-
proved stability at short wavelengths compared to its less sheared
counterparts. By comparing Figs 10(a) and (c), we can certainly
conclude that a combination of strong shear and strong magnetic
field certainly has a very stabilizing influence on short wavelength
fluctuations of the fundamental mode of the kink instability.

Fig. 11 shows the pressure fluctuation in the jet and its ambient
medium when the boundary of the jet has a 20 per cent radial
fluctuation. We show the maximally unstable modes with krj = 0.6.
The perturbed boundary of the jet is also shown in Fig. 11, just to
provide the reader with a point of physical reference. It is worthwhile
to compare the pressure contours in Fig. 11. As with the fundamental
pinch modes shown in Fig. 4, we see that increasing shear causes
the pressure contours in the fundamental kink modes to become
increasingly concentrated towards the axis of the jet. Furthermore,
by noting the similarity between Figs 4(d) and 11(d), we see that the
strongly sheared jet produces smaller pressure fluctuations in the
ambient medium. As a result, a smaller fraction of the jets’ beam
energy is conveyed to the ambient medium as the jets’ axial velocity
profile becomes increasingly sheared.

Fig. 12 shows the role of increasing shear in the stability of a
strongly magnetized jet. As with Fig. 5, we see that the presence of
a strong magnetic field concentrates the pressure perturbations in
the fundamental mode of the kink instability increasingly towards
the high-velocity core of the jet; i.e. towards its axis. Compar-
ing Fig. 12(d) to Fig. 12(a), we can again see that the strongly
sheared jet produces smaller pressure fluctuations in the ambient
medium.
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Figure 14. (a) Shows the pressure variation in a non-magnetized jet with a top-hat profile. (b) Shows the pressure variation in a non-magnetized jet with a = 0.3
(mild shear). (c) Shows the pressure variation in a non-magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure variation in a non-magnetized jet
with a = 0.9 (strong shear). For all the cases in Fig. 14, we have krj = 1.3. In all the cases, the jet’s boundary has a fluctuation that is 20 per cent of the jet’s
radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.

6 THE STABILITY O F THE FIRST
R E F L E C T I O N M O D E O F T H E K I N K
INSTABILITY

Fig. 13 shows the angular frequency (solid line) and temporal
growth rate (dashed line) as a function of the wavenumber ‘k’ for the
first reflection mode of the kink instability. Three panels are shown
in Fig. 13. Fig. 13(a) corresponds to unmagnetized jets (β = ∞)
and shows four different values of shear, corresponding to a = 0,
0.3, 0.6 and 0.9. Fig. 13(b) corresponds to jets with equipartition
between the thermal and magnetic pressure (β = 1) and the same
four values of ‘a’, corresponding to increasing shear from a = 0 to
0.9. Fig. 13(c) corresponds to jets with on-axis magnetic pressure
that is twice as strong as the on-axis gas pressure (β = 0.5) and
again the same four values of ‘a’. In all, Fig. 13 shows the linear
stability of the first reflection mode to kink perturbations for 12 dif-
ferent models for sheared jets with various levels of magnetization.
Using our threshold of ωI rj/cs ≤ 10−2, it is very easy to see from
Figs 13(a)–(c) that increasing shear makes the jets quite stable to
first reflection modes of the kink instability for a substantial range
of short wavelengths.

Figs 14 and 15 show the pressure fluctuations in the first reflection
mode of the kink instability from the panels in Figs 13(a) and (c),
respectively. As in Section 4, we see that increasing shear only helps
in stabilizing the reflection modes of the jets at shorter wavelengths.
To see that, please compare Fig. 14(d) to Fig. 14(a). Alternatively,
please compare Fig. 15(d) to Fig. 15(a).

Our overall conclusion from Sections 5 and 6 is that shear has
a stabilizing influence for the short wavelength modes of the kink
instability. The fundamental mode of the kink instability is not stabi-
lized too much on the longest wavelengths. (This stands in contrast
to the fundamental mode of the pinch instability which was, in-
deed, stabilized quite substantially even at long wavelengths.) This
enhanced stability at short wavelengths extends to fundamental as
well as reflection modes of the kink instability. We have also shown
that for the same perturbation amplitude, the strongly sheared jets
impart lower amount of their beam energy to the ambient medium.

7 D I S C U S S I O N A N D C O N C L U S I O N S

Many types of astrophysical jets, e.g. AGN jets and jets from young
stars, demonstrate the remarkable ability to survive over length-
scales spanning many orders of magnitude. This is in stark contrast
with the terrestrial jets which become destroys by instabilities over
few tens to hundreds of their radius. Numerous analytical and nu-
merical studies of jet stability have been conducted in attempts
to find the explanation of the observation but no widely-accepted
conclusion of this issue has been reached yet.

Most previous analytic studies of linear stability were dealing
with oversimplified jet structure, which was demanded by the need
to make the mathematical problem treatable. More realistic config-
urations can be analysed only with the help of numerical approach.
In Kim et al. (2015), we described a robust numerical method for
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Figure 15. (a) Shows the pressure variation in a strongly magnetized jet (b = 0.5) with a top-hat profile. (b) Shows the pressure variation in a strongly
magnetized jet with a = 0.3 (mild shear). (c) Shows the pressure variation in a strongly magnetized jet with a = 0.6 (modest shear). (d) Shows the pressure
variation in a strongly magnetized jet with a = 0.9 (strong shear). For all the cases in Fig. 15, we have krj = 2. In all the cases, the jet’s boundary has a
fluctuation that is 20 per cent of the jet’s radius. The pressures are all on the same scale so that the pressures across panels within a figure can be inter-compared.

studying jets stability, and used it to study non-relativistic magne-
tized jets with realistic magnetic field structure. In this paper, we
expanded this study by considering the role of the velocity shear.
The pinch and kink modes, both fundamental and first reflection
modes, have been considered.

Overall, we find that velocity shear plays a stabilizing role, by
narrowing the range unstable modes and reducing their growth rates.
The effect is particularly strong for the pinch modes, which become
suppressed both at short and long wavelengths, with only a narrow
unstable range remaining for strong shear. However, for the kink
modes, the effect is weaker and only short (in comparison with
the jet radius) wavelength modes, are suppressed. The long wave-
length modes, which are most threatening the jet disintegration, are
not influenced by the shear. Because such long wavelength spectral
components of perturbations are expected to be present in astro-
physical jets due to a variety of reasons, this conclusion is a matter
of concern. According to our results, the amplitude of the fastest
growing kink modes e-folds on the length-scale le ∼ 3Mrj, where
M is the jet Mach number.

Our results, as well as those presented in Kim et al. (2015), sug-
gest that although the details of the inner structure of jets make
an impact on the jet stability, taken alone they cannot explain the
observations of astrophysical jets, which can propagate over the dis-
tances exceeding their initial radius by more than a million times.
Other important factors have to play a part. One possibility is hinted
by the observed rapid lateral expansion of astrophysical jets, which
appear rather more conical or parabolic than cylindrical. The lat-
eral expansion tends to slow down the growth of unstable modes
simply because it increases the communication time across the jet
(e.g. Rosen & Hardee 2000; Moll, Spruit & Obergaulinger 2008;

Porth & Komissarov 2015). Given the rapidly declining external
pressure in the surrounding of many astrophysical jet engines, the
jets may even become freely expanding, which totally suppresses
global instabilities. When jets enter flat section of the external pres-
sure distribution they may re-confine and then develop instabilities.
Porth & Komissarov (2015) argue that this is how FR-I jets turn
into subsonic turbulent plumes on kpc-scales.

Instabilities may be required to turn on the emission of astro-
physical jets, converting part of their bulk motion or large-scale
magnetic energy into the kinetic energy of emitting particles. Some
kind of dissipation and in-situ particle acceleration is required when
the lifetime of emitting particles is small compared to the jet travel
time. This is indeed the case for the high-energy synchrotron elec-
trons in many AGN jets. If they are energized via jet instabilities,
these are likely to be local and hence non-threatening to the jet
integrity. Porth & Komissarov (2015) have demonstrated that such
local instabilities may develop in the jet core, which expands at
much slower rate compared to the whole jet. They argued that
this may result only in the central part of the jets shining brightly,
whereas their extended sheaths remaining rather dim. Our results
support this possibility. They show that in the presence of velocity
shear the perturbations develop profiles (eigenfunctions) strongly
peaked towards the axis of the jet. Although the non-linear evolution
may strongly deviate from the prediction of the linear theory, this
finding suggests stronger dissipation and higher emissivity near the
jet axis. Compared to FR-I jets, several FR-II jets do indeed exhibit
a core-brightened structure (Bicknell 1984; Bridle & Perley 1984).

This study deals only with the linear stability of non-relativistic
jets as the relativistic equations are more complicated and sub-
stantially harder to solve. However, most AGN jets and GRB jets
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are relativistic and we are planning to extend our formulation to
relativistic jets in the near future.
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