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Abstract 51 

Understanding tropical rainforest carbon exchange and its response to heat and 52 

drought is critical for quantifying the effects of climate change on tropical ecosystems, 53 

including global climate-carbon feedbacks. Of particular importance for the global 54 

carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which 55 

represents non-fire carbon fluxes into and out of biomass and soils. Sub-annual and sub-56 

Basin Amazon NBE estimates have relied heavily on process-based biosphere models, 57 

despite lack of model agreement with plot-scale observations. We present a new analysis 58 

of airborne measurements that reveals monthly, regional-scale (~1 – 8 x 106 km2) NBE 59 

variations. We develop a regional atmospheric CO2 inversion that provides the first 60 

analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon 61 

exchange and that is minimally influenced by biosphere model-based first guesses of 62 

seasonal and annual-mean fluxes. We find little evidence for a clear seasonal cycle in 63 

Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In 64 

particular, we observe increased NBE (more carbon emitted to the atmosphere) 65 

associated with heat and drought in 2010, and correlations between wet season NBE and 66 

precipitation (negative correlation) and temperature (positive correlation). In the eastern 67 

Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 68 

2010 heat and drought. We also identify regional differences in post-drought NBE that 69 

appear related to long-term water availability. We examine satellite proxies and find 70 

evidence for higher gross primary productivity (GPP) during a pulse of increased carbon 71 

uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season 72 

drought, but links between GPP and NBE changes are not conclusive. These results 73 
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provide novel evidence of NBE sensitivity to short-term temperature and moisture 74 

extremes in the Amazon, where monthly and sub-Basin estimates have not been 75 

previously available.  76 

 77 

 78 

 79 

80 
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Introduction  81 

The Amazon has been identified as a highly climate-sensitive ecosystem, where 82 

forest dieback could cause local biodiversity loss and massive release of carbon to the 83 

atmosphere, along with changes in regional and global atmospheric conditions (Cox et 84 

al., 2000; Silva Dias et al., 2002; Betts et al., 2008; Sitch et al., 2008). Understanding 85 

Amazon net biome exchange of CO2 with the atmosphere, and the response of CO2 fluxes 86 

to climate variability and change, is therefore critical for predicting land carbon stability 87 

and global climate feedbacks (Cox et al., 2000; Sitch et al., 2008). Anthropogenic climate 88 

change is expected to alter extreme heat (Diffenbaugh & Scherer, 2011) and dry-period 89 

length and severity (Li et al., 2006; Marengo et al., 2011; Lintner et al., 2012) in the 90 

Amazon. Sustained warm events have already been observed, especially in conjunction 91 

with severe droughts (Diffenbaugh & Scherer, 2011; Toomey et al., 2011; Jiménez-92 

Muñoz et al., 2013). However, uncertainty about the effects of increasing climate 93 

extremes on the long-term state of forest ecosystems, and on CO2 sink strength in 94 

particular, remains high (Phillips et al., 2009; Toomey et al., 2011; Frank et al., 2015). 95 

Previous efforts to quantify non-fire net biome exchange (NBE) of CO2 between 96 

the atmosphere and tropical rainforests have been limited in several ways. Plot and eddy 97 

flux studies are restricted in spatial extent, and are therefore insufficient to characterize 98 

forest carbon exchange over regional or Basin-wide scales (~1 x 106 km2 to ~ 8 x 106 99 

km2) (Araújo et al., 2002). Past atmospheric inversion modeling efforts have made 100 

estimating tropical CO2 exchange at large scales possible, but different inverse models 101 

have not agreed on the sign or strength of the tropical South American carbon balance, 102 

primarily due of a lack of observations in and sensitive to the Amazon (Gurney et al., 103 
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2002; Peylin et al., 2013). More recent studies, using new atmospheric CO2 observations 104 

in the Amazon, calculated NBE fluxes at the Basin-scale (Gatti et al., 2014; van der 105 

Laan-Luijkx et al., 2015), leaving temporal and spatial detail largely unresolved. Finally, 106 

past atmospheric transport inversions for net CO2 fluxes in the Amazon have been 107 

dependent on flux estimates from process-based models, despite the failure of those 108 

models to properly simulate either the observed seasonality of fluxes (Saleska et al., 109 

2003; Baker et al., 2009) or the observed impacts of drought (Powell et al., 2013; Joetzjer 110 

et al., 2014). The lack of independent, temporally- and spatially-resolved constraints on 111 

Amazon fluxes has meant that little has been known about net carbon exchange with the 112 

atmosphere at monthly time scales and regional spatial scales. 113 

The period 2010-2012 spans a particularly interesting suite of years for studying 114 

net exchange of carbon between the Amazon biosphere and the atmosphere, because of 115 

the unusual climate conditions that occurred during that period. In 2010, a major drought 116 

and unusually high temperatures affected much of the Basin (Lewis et al., 2011; Jiménez-117 

Muñoz et al., 2013), whereas drought indices in 2011 and 2012 were closer to the long-118 

term climatic mean. We calculate NBE in the Amazon for this 3-year period, in a 119 

regional Bayesian atmospheric transport inversion, in order to investigate several major 120 

questions, including: 1) What is the spatial and temporal variability of Amazon NBE? 2) 121 

At regional scales, does Amazon NBE follow a consistent seasonal pattern from year to 122 

year, as process-based biosphere models predict? 3) Do drought and heat extremes affect 123 

net exchange of CO2 between the land and atmosphere in the Amazon? 4) If  heat and 124 

drought impacts on NBE are observable, are these effects consistent across the Amazon 125 

Basin, or are there regional differences in response? 5) Can independent satellite proxies 126 
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for gross primary productivity (GPP) offer evidence that observed changes in the 127 

Amazon carbon sink are driven by changes in photosynthesis versus other terrestrial 128 

surface fluxes?  129 

 130 

Materials and Methods  131 

We present a regional Bayesian inversion that calculates 3-hourly and 1ºx1º net 132 

fluxes of CO2, with a posteriori covariance, in the Amazon Basin. Based on the inversion 133 

results and the degrees of freedom offered by the atmospheric observations, we interpret 134 

fluxes at the monthly scale for 5 regions of the Amazon. Our flux calculation method is 135 

largely independent of prior “bottom-up” model estimates of sink strength, spatial pattern 136 

of fluxes, and seasonality of fluxes. We quantify non-fire net biome exchange of CO2 137 

(“NBE”) at high temporal and geographic resolution using in-situ CO2 vertical profiles 138 

collected by aircraft from 2010 to 2012. Fire emissions estimates are from an atmospheric 139 

CO inversion (van der Laan-Luijkx et al., 2015) . Unique aspects of this inversion are 1) 140 

relative independence from biosphere-model NBE estimates, and 2) observationally-141 

constrained calculation and optimization of the background CO2 concentration over the 142 

tropical Atlantic. To minimize uncertainties arising from atmospheric transport, we focus 143 

on relative and month-on-month changes in NBE and use two different transport models 144 

(see Supporting Information). 145 

 146 

Atmospheric observations 147 

Atmospheric carbon dioxide (CO2) is sampled by aircraft along a vertical profile 148 

over four sites in the Amazon Basin at 2-week intervals in 2010-2012. The four sites are: 149 
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Alta Floresta (ALF), Rio Branco (RBA), Santarém (SAN), and Tabatinga (TAB) (Fig. 1). 150 

Most samples are taken between 11:00 and 14:00 local time (Supporting Information Fig. 151 

S1), by which time the previous day’s nocturnal stable layer has mixed into the daytime 152 

planetary boundary layer. Samples are taken by semi-automatic filling of programmable 153 

flask packages; 17 0.7-liter flasks are filled for each vertical profile at SAN, and 12 0.7-154 

liter flasks are filled for each vertical profile at ALF, TAB and RBA. From 1,200 m 155 

altitude and higher, samples are taken roughly every 300 m, and below 1,200 m altitude, 156 

samples are taken roughly every 150 m. CO2 is measured by non-dispersive infrared 157 

analysis at the Instituto de Pesquisa Energéticas Nucleares (IPEN) Atmospheric 158 

Chemistry Laboratory in São Paulo. A full description of sample recovery, analysis, 159 

repeatability, and reproducibility can be found in (Gatti et al., 2014).  160 

 161 

Bayesian atmospheric inversion model 162 

Atmospheric CO2 inversions use spatial and temporal gradients in atmospheric 163 

CO2 concentrations to estimate net surface-to-atmosphere fluxes of CO2. An atmospheric 164 

transport model links atmospheric observations to surface fluxes, and prior knowledge of 165 

fluxes and uncertainties constrain the result. Flux estimation is performed by Bayesian 166 

inversion, with assumptions of Gaussian error distribution (Tarantola, 1987; Rodgers, 167 

2000). An optimal estimate of fluxes can be found by minimizing the cost function, Ls, 168 

which is the sum of modeled and observed CO2 differences weighted by the model-data 169 

mismatch term, R, and prior and optimized flux differences weighted by the flux 170 

uncertainty term, Q: 171 

 
172 
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L
s
= (z - Hs)TR- 1(z - Hs)+(s - sp)

T
Q

- 1(s - sp)     Eqn. 1
 

173 

 174 

z is an n × 1 vector of atmospheric observations, and R is an n × n diagonal 175 

matrix (covariance is not considered) representing model-data mismatch, or expected 176 

uncertainty in how well modeled CO2 concentrations match true CO2 concentrations 177 

(Tarantola, 1987; Engelen et al., 2002). H, which is derived from transport models, is an 178 

n × m matrix of surface influence functions, or the sensitivity of each measurement to 179 

surface fluxes. sp is an m × 1 vector of the prior estimate of surface-to-atmosphere fluxes 180 

of CO2, Q is an m × m matrix of prior flux uncertainties, and s is an m × 1 vector of true 181 

surface-to-atmosphere CO2 fluxes (Tarantola, 1987).  182 

Dimension n is the total number of observations (n = 976 in 2010, n = 917 in 183 

2011, and n = 926 in 2012), and m is the total number of surface flux values being 184 

estimated (spatial resolution of 1487 land grid cells by temporal resolution of 2920 3-185 

hourly time steps in a non leap-year), plus n estimates of background CO2. One 186 

background CO2 estimate for each observation is appended to the state vector for 187 

optimization in the inversion. In this framework, m = 1487 grid cells × 2920 time steps + 188 

n background CO2 values.  189 

Minimizing the objective function in Eqn. 1 results in a solution for ǆ, an m × 1 190 

vector of posterior fluxes (Tarantola, 1987):  191 

 
192 

ŝ = sp +QHT (HQHT +R)- 1(z - Hsp)       Eqn. 2 
 

193 

 194 
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We assess the posterior flux uncertainty, Q̂ , which can be calculated as the 195 

inverse of the Hessian of Ls.  The posterior flux covariance matrix, Q̂ , is a useful metric 196 

for assessing uncertainty and covariance of the flux results.  197 

 198 

Q̂=Q - QHT (HQHT +R)- 1
HQ       Eqn. 3 199 

 200 

Inversions and posterior uncertainty calculations are performed using the 201 

computational efficiency techniques of (Yadav & Michalak, 2013). Using these 202 

techniques, we calculate Q̂  analytically, not by approximation, as is typically done for 203 

calculations with these dimensions. 204 

 205 

Model inputs and uncertainties  206 

Transport models 207 

Surface influence functions (H) are calculated using two Lagrangian particle 208 

dispersion models: Flexpart version 9.0 with 0.5-degree Global Forecast System (GFS) 209 

meteorology and 7-day back trajectories (Stohl et al., 2005), and Hysplit with 0.5-degree 210 

Global Data Assimilation System (GDAS) meteorology (Draxler & Hess, 1998) and 10-211 

day (the decision of the group who runs this model) back trajectories. We use both 212 

models for uncertainty calculations, and Flexpart for the inversions that produced the 213 

results that we show here, based on sensitivity tests and model comparisons (see 214 

Supporting Information).  215 

 216 

Model-data mismatch 217 



 11 

The model-data mismatch uncertainty term, R, represents estimated error in how 218 

closely true atmospheric concentrations of CO2 can be approximated in the inversion. 219 

This uncertainty is due only trivially to measurement-related uncertainty, mainly to 220 

uncertainty in modeled atmospheric transport, and additionally to background sampling 221 

uncertainty, uncertainty of other surface fluxes of CO2, and internal and external 222 

representation uncertainty. Measurement uncertainty includes uncertainty in 223 

measurements made at IPEN (±0.1 ppm) and uncertainty in scale between IPEN and 224 

NOAA (±0.1 ppm) (Gatti et al., 2014). We compare two Lagrangian particle dispersion 225 

models (Flexpart and Hysplit) to estimate transport uncertainty, which is typically ~1-7 226 

ppm (details in Supporting Information). Background CO2 sampling uncertainty is 227 

calculated as the square of the standard deviation of differences between background CO2 228 

values sampled using Flexpart and Hysplit back trajectories (see Supplemental 229 

Information for details). Other surface flux uncertainties include those from biomass 230 

burning, fossil fuel emission and net surface ocean flux of CO2. Footprints from Flexpart 231 

are used to propagate biomass burning uncertainty, QBB, into uncertainty in the 232 

atmospheric mole fraction of CO2 by calculating H*QBB*HT, where QBB is a diagonal 233 

matrix of variance in biomass burning emissions (see Supplemental Information for 234 

details on estimation of QBB). Following the assumptions above, the diagonal elements of 235 

the model-data mismatch from biomass burning uncertainty are added to R. Fossil fuel 236 

and ocean fluxes and their uncertainties are small in the Amazon, and representation 237 

errors (or effects of model resolution) are not well known. To be conservative, however, 238 

we increase the combined 1-sigma uncertainty from all of the above sources by an 239 



 12 

arbitrary value of 5% to allow for possible combined contributions of uncertainty from 240 

those sources. 241 

 242 

Prior NBE flux estimate 243 

The surface-to-atmosphere flux that is estimated in the inversion (ǆ) is non-fire net 244 

biome exchange, FNBE, a term that represents net biosphere-atmosphere exchange of CO2, 245 

including gross primary production, plant (autotrophic) respiration, decomposition 246 

(heterotrophic respiration), and disturbance and human land use change (except for 247 

biomass burning). We subtract the influences of all other major known sources of CO2 in 248 

the Amazon (fossil fuel emission, net ocean exchange and biomass burning) from 249 

atmospheric observations by multiplying estimates of each CO2 source by H, and 250 

subtracting the resulting atmospheric CO2 change from observations (see Supporting 251 

Information). The net source/sink strength of prior FNBE (sp) is zero on timescales longer 252 

than 1 day (that is, sums of daily, weekly, and annual fluxes are zero with respect to net 253 

surface-to-atmosphere CO2 exchange). Prior FNBE has a diurnal cycle of net uptake of 254 

CO2 by the biosphere during the daytime and net release of CO2 to the atmosphere at 255 

night. The diurnal cycle is unique to each gridcell, reflecting spatial heterogeneity in 256 

Amazon NBE, and is calculated as the annual mean diurnal cycle from SiBCASA (with 257 

the mean subtracted) for the year 2011 (Schaefer et al., 2008; van der Velde et al., 2014). 258 

Detailed discussion of the prior flux estimate and a test of posterior flux sensitivity to sp 259 

can be found in the Supporting Information. 260 

 261 

NBE flux uncertainty 262 
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The diagonal elements of Q contain prior flux variance (Eqns. 1-3). Inversion flux 263 

calculations are sensitive to the choice of prior flux uncertainty (Gerbig et al., 2006; 264 

Gourdji et al., 2012). Of particular importance for our experimental design is that prior 265 

flux uncertainty is large enough that the posterior flux estimate can diverge from the 266 

neutral prior flux estimate. We vary prior FNBE uncertainty with 1º by 1º in space, but not 267 

in time, since the seasonality of Amazon flux uncertainty is not known, and because 268 

varying FNBE uncertainty in time could affect temporal variability of the posterior flux. 269 

The time resolution of the inversion is 3-hourly, which means that the full amplitude of 270 

the diurnal cycle of CO2 is represented in the prior flux uncertainty estimate. The 271 

amplitude of the diurnal cycle of NBE in the Amazon is thought to be of a similar order 272 

of magnitude as the gross photosynthetic and respiration fluxes (e.g. (Powell et al., 273 

2013)), and those component fluxes are thought to be of similar magnitudes to one 274 

another (Malhi et al., 1999). We therefore estimate prior flux variance as the square of 275 

100% of annual mean monthly heterotrophic respiration, from the CASA-GFEDv3.1 276 

output (van der Werf et al., 2010). We account for additional uncertainty arising from 277 

possible errors in the estimated diurnal cycle of the prior flux, calculated as the square of 278 

the standard deviation of the difference between the SiBCASA and CASA-GFED diurnal 279 

cycles for each grid cell (see Supporting Information).  280 

The off-diagonal elements of Q represent temporal and spatial correlations of 281 

uncertainty in ecosystem carbon exchange (Baldocchi et al., 2001; Michalak et al., 2004; 282 

Gerbig et al., 2006). We assume that flux correlations decay isotropically in space and 283 

time, with exponential decorrelation length scale parameters of Țtime = 5 days and Țspace = 284 

300 km (e.g. Yadav & Michalak, 2013). This choice means we assume that fluxes that 285 
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are closer in space or time have higher uncertainty correlations than do fluxes that are 286 

more geographically or temporally separated. Flux covariance in time is limited to the 287 

same time step of the diurnal cycle; for example, fluxes in the first time step of Day 1 are 288 

correlated with the first time step in the days preceding and following Day 1 (in the limit 289 

of the exponentially decaying time correlation constant), but not with any other time of 290 

day (Yadav & Michalak, 2013).  Țspace of 300 km and Țtime of 5 days implies that fluxes 291 

remain correlated to roughly 3 times those distances (900 km and 15 days), which is 292 

approximately the time scale over which synoptic weather patterns vary in the tropics 293 

(Madden & Julian, 1972) and the length scale over which climatic and ecosystem regimes 294 

vary in the Amazon (Marengo et al., 2011; Restrepo-coupe et al., 2013). It is possible 295 

that our choice of Țtime is too short, as correlations between flux uncertainties separated by 296 

more than ~1 month are possible. In the limit of the absolute values of GPP and 297 

respiration being roughly equal, however, fluxes would be neutral and likely to follow 298 

synoptic variability, which suggests that 5 days is a reasonable value.   299 

Posterior FNBE uncertainties are calculated using Eqn. 3 for the time steps and 300 

spatial scales of interest (i.e. monthly, seasonally, and annually, and Basin-wide and by 301 

region), following (Yadav & Michalak, 2013). 302 

 303 

Background CO2 304 

The prior “background CO2”, or boundary condition, is the CO2 concentration of 305 

air flowing into the Amazon Basin (Fig. 1). The background CO2 concentration is 306 

removed from observations of CO2 to isolate surface-to-atmosphere flux signals that 307 

originate in the domain. The background CO2 concentration is estimated in four steps 308 
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(described in more detail in the Supporting Information): 1) a background CO2 “prior” is 309 

calculated by sampling the 3-dimensional (latitude, altitude, time) CO2 mole fraction 310 

output from CarbonTracker version CT2013_ei (CarbonTracker CT2013B; Peters et al., 311 

2007); 2) the background CO2 “prior” is bias-corrected using in situ measurements of 312 

atmospheric CO2 from two NOAA/ESRL GMD network sites in the Atlantic Ocean; 3) 313 

the bias-corrected background CO2 “prior” is sampled using Lagrangian transport model 314 

backtrajectories for each observation; and 4) the background CO2 prior is appended to the 315 

state vector, sp, and is optimized in the inversion.  316 

Two sources of “background CO2 construction” uncertainty are accounted for, 317 

and are included in the section of the Q matrix related to prior background CO2 318 

uncertainty (which is fully populated and includes covariance terms). Estimation of this 319 

source of uncertainty is described in detail in the Supporting Information. Correlations 320 

between background CO2 uncertainties decay exponentially and isotropically in space 321 

(Țspace =1000 km) and time (Țtime = 7 days), at scales equivalent to ~1/3 the synoptic-scale 322 

variability of domain inflow air (Madden & Julian, 1972). An additional source of 323 

uncertainty arising from the background inflow of CO2 is the “background CO2 324 

sampling” uncertainty, which is included in the model-data mismatch term, R (described 325 

above and in the Supporting Information). 326 

 327 

Climate and satellite data  328 

We assess drought conditions in the Amazon using two metrics, monthly 329 

cumulative water deficit (CWD) and the supply-demand drought index (SDDI), both 330 

standardized to reflect anomalies from the long-term climatological mean. We include 331 
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CWD given its use in the Amazon literature (Aragão et al., 2007; Gatti et al., 2014; 332 

Doughty et al., 2015), and we include SDDI in order to provide a potentially more 333 

realistic estimation of moisture deficit.  334 

CWD is calculated according to the methods of (Aragão et al., 2007) (see 335 

Supporting Information for details), using precipitation data from the Tropical Rainfall 336 

Measuring Mission (TRMM) Merged HQ/Infrared Precipitation dataset (Huffman et al., 337 

2007). Calculation of CWD uses time and space invariant evapotranspiration, which 338 

provides simplicity, but is an unrealistic assumption. A second simplifying assumption of 339 

CWD is that the index resets to zero each year, meaning that it does not capture the 340 

cumulative effects of precipitation deficits over multiple years. These simplifying 341 

assumptions provide motivation for also analyzing the SDDI. 342 

 The SDDI quantifies moisture deficit by accounting for current climate 343 

conditions as well as the previous month’s drought state, using a temperature-based 344 

estimate of atmospheric demand for water vapor (Rind et al., 1990). We calculate SDDI 345 

following the methods of  Touma et al. (2015) (see Supporting Information for details), 346 

using monthly gridded precipitation from Global Precipitation Climatology Project  347 

(GPCP) (Adler et al., 2003), and potential evapotranspiration calculated using the 348 

Thornthwaite method (Touma et al., 2015) with gridded monthly temperature from 349 

NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996). Negative values of CWD and SDDI 350 

indicate drought conditions, and positive values indicate wet conditions. 351 

Two satellite proxies – solar-induced fluorescence (SIF) and enhanced vegetation 352 

index (MAIAC EVI) – are thought to reveal variations in the relative strength of GPP. 353 

Estimates of GPP using eddy covariance techniques show high correlations with SIF 354 
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(Guanter et al., 2014; Joiner et al., 2014) and EVI (Rahman et al., 2005; Sims et al., 355 

2006; Kuhn & et al., 2007; Huete et al., 2008). We use SIF calculated from GOME-2 356 

version 26, level 3, and EVI from MAIAC (details regarding data and processing can be 357 

found in Supporting Information). Positive values of SIF and EVI are proxy indications 358 

of higher rates of GPP (greater biome uptake of CO2). 359 

We define the dry season in each region as those months when long-term (1981-360 

2010) climatological mean GPCP precipitation (Adler et al., 2003) is ≤ the lowest 361 

quartile of annual long-term mean GPCP precipitation (1981-2010).  362 

 363 

Regional analysis 364 

We analyze NBE for 5 regions of the Amazon (Fig. 3) and at the monthly scale, 365 

based on the degrees of freedom offered by the observations and surface influence 366 

functions (see Supporting Information for details). 367 

 368 

Results  369 

Model fit to observations 370 

The posterior fluxes result in a much better match to atmospheric observations 371 

than the prior fluxes (that is, ((H*ǆ) - z) is smaller, on average, than ((H*sp) - z)). The 372 

mean difference and standard deviation are shown in Table 1 and Figure 2. Furthermore, 373 

the posterior bias ((H*ǆ) - z) is close to zero at all sites and in all seasons (Table 1, Fig. 374 

2), and posterior uncertainties were reduced with respect to prior uncertainties (see 375 

Supporting Information). These metrics indicate model success in adjusting fluxes to 376 

better match observations. We observe no evidence of seasonality or other systematic 377 
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biases in the difference between posterior modeled CO2 and observed CO2 ((H*ǆ) - z) 378 

(Fig. 2).  379 

 380 

Annual Basin-wide NBE 381 

 Total annual FNBE for the Amazon Basin shows important differences between 382 

years (Fig. 3a). We confirm that Basin-wide NBE was more positive (more of a source to 383 

the atmosphere) in 2010 than in 2011 (bar plot in Fig. 3a) (Gatti et al., 2014; Doughty et 384 

al., 2015; van der Laan-Luijkx et al., 2015). The difference of 0.28 ± 0.45 PgC that we 385 

observe is statistically consistent with the differences of 0.22 ± 0.26 PgC obtained using a 386 

mass balance approach (Gatti et al., 2014), 0.08-0.26 PgC/yr using data assimilation (van 387 

der Laan-Luijkx et al., 2015), and 0.38 PgC (0.22-0.55 PgC) using extrapolated forest 388 

plot data (Doughty et al., 2015). We find an even greater difference of 0.68 ± 0.45 PgC 389 

between 2010 and 2012, meaning that even more carbon was lost to the atmosphere in 390 

2010 than in 2012. 391 

 392 

Monthly and seasonal variations in NBE 393 

At the monthly and Basin-wide scale, we observe variations in NBE (± 0.04 PgC 394 

month-1, 1ı) and differences in seasonal patterns between 2010, 2011 and 2012 (Fig. 3a), 395 

suggesting that Amazon NBE shows seasonal variability, but does not exhibit a clearly 396 

consistent seasonal cycle during the years studied. Figure 3b shows the definitions of the 397 

5 regions of the Amazon Basin, and Figure 3c shows NBE for each region. At the scale 398 

of wet- and dry-season variability, consistent patterns of NBE do not emerge in any 399 

region (Fig. 4). 400 
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The dominant pattern across the basin in 2010 is higher NBE in the wet season 401 

(indicating higher carbon losses to the atmosphere), more negative NBE in the dry 402 

season, and higher NBE at the end of the year. In 2011 and 2012, however, the seasonal 403 

patterns are much different. In general, NBE decreased through 2011 and 2012. One 404 

exception is Region 4, where higher carbon uptake in the wet season of 2011 was 405 

followed by increased NBE during the rest of the year. 406 

The central Amazon (Region 3) and eastern Amazon (Region 4) show the highest 407 

relative CO2 loss in 2010 (Figs. 3c, 4). Sink strength in those two regions also exhibits 408 

large contrasts between the beginning and end of the record. Furthermore, the 409 

meteorological conditions in 2010-2012, combined with the locations and altitudes of the 410 

atmospheric CO2 observations, mean that the observational dataset provides the most 411 

information about fluxes in Regions 3 and 4 (Fig. 1, Table S1). This is shown in Figure 1 412 

as the relative influence of surface fluxes on measured atmospheric mole fractions: land 413 

areas that are close to and upwind of observations provide high influence on those 414 

observations. For these reasons, we focus the interpretation of our results on Regions 3 415 

and 4. 416 

Regions 3 and 4 show higher monthly and wet/dry seasonal variability in 2010, 417 

and lower variability in 2011-2012, especially in Region 3. Several tests (described in the 418 

Supporting Information) suggest that this is unlikely to be an artifact of model 419 

uncertainty parameterization. Not using a biosphere prior is of primary importance for 420 

establishing an independent means of inferring Amazon NBE. It is possible that prior 421 

uncertainties are too small, given a neutral prior, to recover seasonality, or that the 422 

observations are not dense enough to reliably detect NBE seasonality. We address the 423 
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first possibility by assigning large prior flux uncertainty and the second possibility by 424 

only interpreting fluxes at scales that match the degrees of freedom offered by the 425 

observations.  426 

 427 

Eastern Amazon wet season 428 

Our record begins during the wet season in 2010, when we find relatively high 429 

NBE in the eastern Amazon (indicating higher biosphere-to-atmosphere transfer of 430 

carbon) (Fig. 5). Elevated wet-season NBE (increased carbon loss) does not appear to be 431 

a seasonally recurring pattern in the eastern Amazon (Fig. 5), or anywhere else in the 432 

Basin (Figs. 3c, 4). In the eastern Amazon, NBE is much lower in the 2011 wet season, 433 

and closer to neutral in the 2012 wet season. Satellite proxies for GPP in the eastern 434 

Amazon do not suggest that lower GPP can explain the wet season NBE increase. SIF 435 

and EVI in that year are not consistently higher or lower in the 2010 wet season than in 436 

the years following (Fig. 6). 437 

An interesting detail of the 2011 and 2012 wet seasons in the eastern Amazon is a 438 

transient shift towards more negative NBE (indicating more carbon uptake by the 439 

biosphere) in February. In February 2010, a pause in the multi-month NBE increase is 440 

also evident. This pattern suggests a possible recurrence of February uptake, although 441 

only a longer record would confirm this pattern. Eastern-Amazon EVI and SIF are higher 442 

in February 2011 (the month that shows the strongest NBE signal) than in either the 2010 443 

or 2012 wet seasons, suggesting higher GPP in the early 2011 wet season than in the 444 

following years.  445 
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Precipitation in the eastern Amazon is low during the 2010 wet season compared 446 

with the long-term climatological mean. Drought indicators (SDDI and CWD) suggest 447 

the onset of eastern Amazon drought conditions in March 2010 (Fig. 5). In that month, 448 

precipitation is >2 standard deviations (ı) below the long-term climatological mean (Fig. 449 

5). By contrast, monthly wet season precipitation in 2011 and 2012 is within or 450 

marginally above 1 standard deviation of the long-term mean (Fig. 5).  451 

Daily maximum 6-hourly temperature in the eastern Amazon is not remarkably 452 

different from the long-term mean in the 2010, 2011, or 2012 wet seasons, although 453 

conditions may be marginally warmer than the long-term mean in the 2010 wet season 454 

and marginally cooler in the 2011 and 2012 wet seasons (Fig. 5).  455 

 456 

Eastern Amazon dry season 457 

 Eastern Amazon NBE remains relatively high throughout the 2010 dry season 458 

(June-September), and is also high in the 2011 dry season (Figs. 4, 5). In 2011, an 459 

increase in NBE is evident at the beginning of the dry season, which is notable because it 460 

represents an abrupt shift away from more negative values during the wet season. During 461 

the 2012 dry season, by contrast, NBE becomes steadily more negative (a shift towards 462 

more carbon uptake by the biosphere). In September-November, eastern Amazon NBE is 463 

0.04 ± 0.04 PgC lower in 2012 than in the same months in 2010 (Fig. 5).  464 

Although the 2010 wet season in the eastern Amazon is not particularly hot, the 465 

dry season in that region is both very dry and very hot: September precipitation is 54% of 466 

normal, and maximum 6-hourly temperature is >1ı above the long-term mean in 74% of 467 

days in August-September, including >2ı above the long-term mean in 23% of days in 468 
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September. By contrast, in the 2011 dry season, eastern Amazon precipitation is close to 469 

“normal” (107% of the long-term mean). Although some days in the 2011 dry season do 470 

exhibit maximum 6-hourly temperature >1ı of the long-term mean, hot conditions are far 471 

less common and less extreme in 2011, compared with 2010. In 2012, the end of the dry 472 

season in the eastern Amazon is again anomalously hot: 39% of days in August-473 

September 2012 exhibit maximum 6-hourly temperature >1ı above the long-term mean, 474 

and 2% of days are >2ı above the long-term mean. SDDI shows the consistently lowest 475 

values (indicating dry conditions) of the eastern Amazon record in the 2010 dry season, 476 

whereas SDDI is slightly positive in the 2011 dry season and neutral in the 2012 dry 477 

season.  478 

Satellite data show higher SIF and EVI in the eastern Amazon in July-December 479 

of 2011 than in July-December of 2010 or 2012 (where available), suggesting higher GPP 480 

in the latter half of 2011 than in the other years studied (Figs. 5, 6). By contrast, from the 481 

end of the dry season to the end of the year in 2010 (August-December), SIF and EVI are 482 

much lower than the two following years, indicating lower GPP in the second half of 483 

2010 than in 2011 or 2012 (Figs. 5, 6). 484 

 485 

Central Amazon wet season 486 

Central Amazon NBE shows high variability in 2010, but is comparatively stable 487 

in 2011 and 2012. It is possible that this result is due to low observational constraint or 488 

our use of a neutral prior, although such artifacts would be expected to affect all years 489 

equally. Central Amazon NBE shows a steady increase through the 2010 wet season that 490 

peaks in May (Fig. 7). In the 2011 wet season, central Amazon NBE is lower than in 491 
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2010 (indicating more carbon uptake) (Figs. 4, 7). A negative NBE excursion is observed 492 

in February of 2011, although it is not possible to discern the significance of this shift 493 

given the statistical uncertainties (Fig. 7). Central Amazon NBE is even lower in the 2012 494 

wet season, and shows an abrupt and transient shift towards more negative NBE in 495 

February 2012.  496 

Monthly precipitation rates in the 2010 wet season are within 1 standard deviation 497 

of the long-term climatological mean. SDDI is high in early 2010 in the central Amazon, 498 

likely due in part to normal or wetter-than-normal precipitation that began in late 2009 499 

(Fig. 7, Supporting Information Fig. S2). Precipitation in 2011 in the central Amazon is 500 

also close to the long-term mean, and 2012 is slightly wetter than normal during several 501 

months, but the annual mean is 102% of the long-term climatology.  502 

A notable climatic difference between the 2010 wet season and the 2011 and 2012 503 

wet seasons is extreme heat in the central Amazon. In January-May of 2010, 41% of days 504 

exhibit maximum 6-hourly temperature >1ı above the long-term mean, and 9% of days 505 

are >2ı above the long-term mean. By contrast, only 4% of days in 2011 and 7% of days 506 

in 2012 are >1ı above the long term mean, and less than 1% of days in January-May 507 

2011 or 2012 are greater than 2ı above the long-term climatological mean.  508 

Satellite proxies for GPP in the central Amazon wet season do not show 509 

significant differences between years, with the exception of January-February of 2011, 510 

when both SIF and EVI are high. This feature is not seen in January-February of 2010 or 511 

2012 (Figs. 6, 7).  512 

 513 

Central Amazon dry season 514 
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In 2010, the beginning of the central Amazon dry season (June and July) is 515 

marked by a shift towards more negative NBE (more carbon uptake by the biosphere) 516 

relative to the end of the 2010 wet season. While NBE in the following years does not 517 

show a change in sink strength at the end of the wet season, the absolute values of NBE 518 

in June-July 2011 and 2012 are similar to the NBE values observed in June-July 2010. In 519 

the middle of the 2010 dry season, however, NBE begins to increase again, indicating an 520 

increase in net carbon loss to the atmosphere, a feature that is not observed in the dry 521 

season in the following years. As a result, September-November NBE is 0.03 ± 0.05 PgC 522 

greater in 2010 than 2011 and 0.08 ± 0.05 PgC greater in 2010 than in 2012 (Fig. 7).  523 

Central-Amazon monthly NBE is stable and within 1ı of neutral for all of 2011, 524 

suggesting that NBE did not shift more towards a source or a sink during that year (Fig. 525 

7). In 2012, NBE is slightly lower over the length of the dry season, but is not statistically 526 

different from 2011 dry season NBE.  527 

In August of the 2010 dry season, NBE shows a sharp increase in the central 528 

Amazon at the same time as the onset of drought conditions, according to both the CWD 529 

and SDDI (Fig. 7). Central-Amazon precipitation is 65% of (and >1ı below) the long-530 

term mean in August-September 2010. In addition, nearly a quarter of days in August 531 

show maximum 6-hourly temperature >2ı above the long-term mean, indicating that the 532 

central Amazon, like the eastern Amazon, is anomalously hot and dry during the 2010 533 

dry season.  534 

In the 2011 dry season, SDDI is negative, but CWD is not, which suggests that 535 

either water deficits from low precipitation in 2010 persisted into 2011, or that 536 

evapotranspiration is underestimated in CWD for those months. While the 2011 dry 537 
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season shows mostly “normal” temperatures, the end of the 2012 dry season is hot: 34% 538 

of days show maximum 6-hourly temperature >1ı above the long-term mean in August-539 

September, and 10% of days show temperatures >2ı above the long-term mean. Monthly 540 

precipitation in August-September 2012, however, is within 1ı of the long-term 541 

climatological mean. 542 

During the first two months of the dry season in the central Amazon, SIF and EVI 543 

are similar in 2010, 2011 and 2012. In August and September, however, SIF and EVI are 544 

substantially lower in 2010 than in August-September of the following two years. This 545 

suggests lower late dry season GPP in 2010 than in 2011 or 2012. Satellite proxies for 546 

GPP do not reveal consistent differences between the 2011 dry season and the 2012 dry 547 

season; 2010 is the only clear outlier during this period (Figs. 6, 7).  548 

 549 

Discussion  550 

We find month-to-month and year-to-year NBE variability in the Amazon that is 551 

small compared with posterior uncertainty. This high uncertainty likely results from 552 

conservative choices for uncertainty parameters, as the methods and Supplemental 553 

Information sections describe. The prior error (and therefore posterior error; Q̂  depends 554 

on Q (Eqn. 3)) may be overly conservative, and it may, therefore, be justifiable to 555 

interpret the signals in this record more liberally than we do here. Future investigations of 556 

flux uncertainties in the Amazon (for example using maximum likelihood techniques 557 

(Michalak et al., 2005)) or investigation of the “uncertainty of uncertainties” (for 558 

example using hierarchical Bayesian methods (Ganesan et al., 2014)) could help answer 559 

whether our uncertainty limits are overly cautious. 560 
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 561 

Evidence for seasonality in Amazon NBE 562 

Seasonality in net carbon exchange may be expected in the Amazon, given the 563 

strong seasonality in photosynthetically active radiation (PAR) (Restrepo-coupe et al., 564 

2013), and the observation, by eddy flux techniques, of seasonal consistency in gross 565 

ecosystem productivity that varies according to water limitation across the Basin 566 

(Restrepo-coupe et al., 2013). Given this consistent wet-dry seasonality (Figs. 5, 7) and 567 

seasonality in PAR (Restrepo-coupe et al., 2013), one might expect to observe consistent 568 

seasonality in NBE from year to year.  569 

A consistent seasonal cycle in NBE is not evident in our three-year record. A 570 

possible exception is wet season (particularly February) increased carbon uptake that 571 

occurred in 2011 and 2012 in the eastern and central Amazon, although the signal varies 572 

in magnitude and is, at some points, small compared with statistical uncertainty. If 573 

February carbon uptake is a seasonally recurring pattern in NBE change, then February 574 

2010 was an anomaly (although the wet season NBE increase paused during that month). 575 

Assuming that the absence of a clear NBE seasonal cycle between years observed 576 

in this study does not arise from high uncertainties or low observational constraint, it may 577 

indicate higher sensitivity of NBE to short-term climate fluctuations than to seasonal 578 

climatology. Because NBE is roughly the difference between GPP and ecosystem 579 

respiration, variations in forest carbon balance may be more sensitive to perturbations in 580 

GPP and respiration in the tropics (where gross fluxes of carbon into and out of biomass 581 

and soil stores remain large year-round (Malhi et al., 1999)), compared with the higher 582 

latitudes (where seasonal cycles of GPP and Respiration dominate the NBE signal (Malhi 583 
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et al., 1999)). It is therefore possible that, in the Amazon, short-term perturbations to 584 

GPP and respiration are sufficient to rapidly tip the carbon balance between source and 585 

sink. This inference is supported by local-scale eddy covariance studies in the tropics that 586 

find large one-way fluxes of CO2 into and out of the biosphere, but no strong seasonality 587 

in net ecosystem exchange of CO2 (Loescher et al., 2003; Goulden et al., 2004). 588 

We investigate the possibility that climate anomalies were related to the monthly 589 

and interannual variations in NBE in our record. Further, we investigate whether satellite 590 

proxies for GPP provide evidence of mechanistic links between observed climate and 591 

NBE signals.  592 

 593 

NBE and climate anomalies 594 

 The large differences in NBE between the years studied (which corroborate other 595 

studies of 2010 and 2011) appear to coincide with differences in climate. A major 596 

drought affected much of the Amazon Basin in 2010 (Lewis et al., 2011; Figs. 5, 7), and 597 

NBE was higher in that year than in 2011 or 2012 (Figs. 3a, 4): years that our indices 598 

show also had lower drought stress. This apparent relationship between Basin-wide 599 

drought and NBE is also evident at regional scales within the Basin. For example, in the 600 

eastern Amazon, the increase in NBE (towards a biome carbon source to the atmosphere) 601 

in March 2010 coincided with the onset of severe drought conditions (Fig. 5). In July 602 

2010, a period of extreme heat began at the same time as NBE increased again (Fig. 5). 603 

Interestingly, in the central Amazon, high wet-season NBE observed in 2010 occurred 604 

during a period of high temperatures, but not drought stress (Fig. 6). In the late dry 605 
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season of 2010, however, both drought and high heat accompanied an increase in central 606 

Amazon NBE (Fig. 6).  607 

We examine correlations between monthly NBE and anomalies in precipitation 608 

and temperature in the wet and dry seasons in both regions. Because relationships 609 

between climate and carbon exchange could be subject to lags in response time, we also 610 

compare climate data with NBE in the following month. 611 

We found a significant (at the 95% level) negative correlation during the peak wet 612 

season (January-April) between NBE and precipitation anomalies (Adler et al., 2003) in 613 

the eastern Amazon (R = -0.57 (p = 0.05)) and a less strong correlation in the central 614 

Amazon (R = -0.36 (p = 0.25)) (Fig. 8). We found even stronger correlations between 615 

NBE and the previous month’s precipitation anomalies in both the eastern and central 616 

Amazon (R = -0.79 (p = 0.002) and R = -0.52 (p = 0.08), respectively) (Fig. 8). This 617 

finding suggests a strong relationship between water inputs and NBE with a possible lag, 618 

although temporal correlations between precipitation in consecutive months could 619 

explain part of this correlation. Correlations between precipitation and NBE could partly 620 

explain why increased February carbon uptake was more strongly pronounced in the non-621 

drought years of our record. It is notable that correlations between precipitation and NBE 622 

were strongest in the eastern Amazon, a region that includes savanna, which is highly 623 

responsive to rainfall (Santos & Negri, 1997). In the dry season, no clear correlations 624 

were found between NBE and precipitation, except in the central Amazon, when NBE 625 

lagged precipitation by one month (R = -0.42 (p = 0.18)). 626 

 Correlations between temperature anomalies (Kalnay et al., 1996) and peak wet 627 

season NBE were even stronger than correlations with precipitation (central Amazon R = 628 
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0.89 (p < 0.001) and eastern Amazon R = 0.66 (p = 0.02)). NBE was also correlated with 629 

the previous month’s temperature anomalies (central Amazon R = 0.76 (p = 0.004) and 630 

eastern Amazon R = 0.72 (p = 0.008)) (Fig. 9). Again, these correlations could be 631 

affected by physical links between climate conditions in consecutive months. No 632 

significant correlations were found in the dry season between NBE and temperature (or 633 

the previous month’s temperature) in either region (Fig. 9). 634 

While our observational dataset does not provide enough information to pursue a 635 

rigorous examination of climate impacts and lags greater than weeks to months, it is 636 

interesting to speculate whether multi-year impacts of the 2010 drought are evident in our 637 

record. For example, if the positive correlation shown in Fig. 8 is not evidence of a direct 638 

link between precipitation and NBE, it may instead reveal a multi-year “recovery” of 639 

NBE in the years following drought. More years of data and NBE observations might 640 

reveal the cause of these observed correlations, and satellite and plot-scale observations 641 

of ecosystem functioning could also provide additional evidence.  642 

 643 

Satellite proxies for GPP 644 

We are able examine satellite observations of SIF and EVI concurrent with our 645 

record, to look for evidence of changes in GPP that coincide with changes in NBE. 646 

During the wet season in the eastern Amazon, NBE was higher in 2010 than in 2011 or 647 

2012. If low GPP had contributed to this increased NBE, then satellite proxies might be 648 

expected to show lower SIF and EVI during the 2010 wet season. This signal is not 649 

apparent, however, which leaves the possibility that a change in GPP was not the primary 650 

contributor to increased NBE during the dry conditions of the 2010 wet season. Similarly, 651 
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satellite proxies for GPP in the central Amazon do not offer evidence for lower GPP 652 

causing high NBE. Instead, it is possible that enhanced respiration was related to high 653 

NBE, perhaps related to anomalous heat during that period (Raich & Schlesinger, 1992).  654 

In 2011, January-February NBE indicated higher rates of carbon uptake in the 655 

eastern Amazon (and to a lesser extent in the central Amazon). In both the central and 656 

eastern Amazon, satellite proxies for GPP were higher in January-February of 2011 than 657 

in January-February of 2010 or 2012. NBE and satellite proxies for GPP agree that 658 

carbon uptake was high during the 2011 wet season in the eastern Amazon, which 659 

suggests that increased GPP may have contributed to decreased NBE. In the central 660 

Amazon, however, that relationship is less evident: when central Amazon NBE was at its 661 

lowest value of the three-year record in February of 2012, satellite proxies for GPP were 662 

not higher than in the previous years, suggesting that lower NBE is not necessarily 663 

related to higher GPP in the central Amazon wet season.  664 

In the beginning of the dry season (June-July), satellite proxies for GPP show no 665 

clear difference between years in either the central or eastern Amazon. In the latter half of 666 

the dry season, however, August-November SIF and EVI in both regions were lower in 667 

2010 than in 2011 or 2012 (Fig. 6), which suggests that GPP was lower in the late 2010 668 

dry season than in the years following. This period of lower GPP coincided with 669 

increased NBE, which indicates that reduced GPP could have contributed to increased 670 

carbon losses in the 2010 dry season, a period of extreme heat and drought.  671 

In the 2011 dry season, the observed increase in eastern Amazon NBE did not 672 

appear to coincide with decreases in satellite proxies for GPP. If anything, SIF and EVI 673 

were higher in the 2011 dry season than in 2010 or 2012. In the 2011 central Amazon dry 674 
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season, neither NBE nor proxies for GPP showed notable changes. The 2012 dry season 675 

was exceptionally hot, but not dry, in the central Amazon, and NBE and GPP were both 676 

unremarkable. In the eastern Amazon, a period of decreased eastern Amazon NBE in the 677 

2012 dry season was not accompanied by changes in SIF or EVI. 678 

Neither climatic conditions nor GPP, both of which were “normal” in the eastern 679 

Amazon after February 2011, offer clues to why NBE increased during that period. We 680 

posit two possible scenarios for why NBE might have increased in 2011: First, increased 681 

biomass mortality during the 2010 drought (Brienen et al., 2015; Doughty et al., 2015), 682 

in conjunction with a possible delay in peak mortality following the drought (Doughty et 683 

al., 2015), may have provided substrate for decomposition, enabling total Respiration to 684 

increase as the seasonal cycle warmed in the 2011 dry season (Fig. 5). Second, fire 685 

emissions could have been higher than the estimate that we used during the 2011 dry 686 

season, which would have resulted in a spurious increase in NBE. However, even the 687 

highest biomass burning emissions estimates from (van der Laan-Luijkx et al., 2015) 688 

cannot explain the NBE increases observed in 2011 (Supporting Information Fig. S3).  689 

If NBE increases in the eastern Amazon in 2011 were related to delayed impacts 690 

of the 2010 drought, why did NBE not also increase in the central Amazon in the 2011 691 

dry season? Most regions in the Amazon Basin experienced a progressive decrease in 692 

NBE after 2010 (Fig. 3c), but the patterns of NBE change varied: Eastern Amazon NBE 693 

decreased more slowly over the three-year record than Regions 1, 3, and 5, while western 694 

Region 2 NBE decreased from higher 2010 values relatively quickly. This spatial pattern 695 

generally corresponds with the long-term distribution of soil water availability (Nepstad 696 

et al., 2004; Fan et al., 2013) and seasonally redistributed subsurface water storage (Guan 697 
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et al., 2015), with the fastest recovery occurring where long-term mean soil water 698 

availability is greatest (Supporting Information Fig. S4). Both deep plant available water 699 

and shallow water table depth are thought to buffer the effects of drought on productivity 700 

by allowing forests to maintain soil water availability via redistribution (Nepstad et al., 701 

2004; Poulter et al., 2009; Fan et al., 2013). While other factors such as drought severity, 702 

nutrient availability, local climate, impacts of human land use change, and altitude could 703 

also explain the gradient in recovery timing, the spatial correspondence suggests the 704 

possibility that access to soil water could have at least partially controlled observed 705 

changes in the carbon sink over the three year period from 2010 to 2012.  706 

Overall, our results reveal possible evidence of sensitivity of the Amazon carbon 707 

balance to climate anomalies in 2010-2012, a period of increasingly high temperatures 708 

compared with previous decades (Jiménez-Muñoz et al., 2013). We suggest that climate 709 

variations may have resulted in changes in GPP and Respiration that shifted biosphere 710 

exchange between sink and source and obscured seasonal patterns in NBE. In particular, 711 

it seems possible that a seasonal pattern of early wet season increased carbon uptake (and 712 

increased GPP) did not occur in 2010, when heat and drought stress affected much of the 713 

Basin.  714 

Whether due to higher drought intensity or higher ecosystem sensitivity, periods 715 

of increased NBE lasted through the end of 2011 in the eastern Amazon. The spatial and 716 

temporal patterns of recovery across the rest of the Basin may suggest a buffering effect 717 

from long-term soil water storage. Water-limited regions in the Amazon are expected to 718 

expand in the 21st century (Lintner et al., 2012; Pokhrel et al., 2014), as is the occurrence 719 

of severe heat (Diffenbaugh & Scherer, 2011), which will likely increase the exposure of 720 



 33 

Amazon forest carbon to hot and dry conditions. Furthermore, negative correlations 721 

between wet season NBE and precipitation, and positive correlations between wet season 722 

NBE and temperature, suggest increasing risk of ecosystem carbon losses under future 723 

climate change scenarios, with potential for lasting carbon-climate impacts.  724 

Future analysis and observation of Amazon carbon exchange will help to 725 

elucidate the relationships between climate and carbon cycling. A complementary 726 

investigation using the geostatistical methods of (Michalak et al., 2004) would allow for 727 

investigation of correlations between flux intensities and climate parameters (and for 728 

comparison with our approach to limiting dependence upon sp, as geostatistical models 729 

do not use a standard prior). Additional trace gas observations, such as ǻ17O, carbonyl 730 

sulfide (COS) or į13C of CO2, could reveal which component fluxes drive NBE 731 

variability, and provide more conclusive links to ecosystem functioning. Finally, there is 732 

a need to connect observations collected at different spatial scales in the Amazon – plot, 733 

flux tower, tall tower, and our aircraft data – to determine the homogeneity of forest 734 

response to climate and the representativeness of observations at different scales. 735 
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