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Abstract—In this paper, a novel high speed ECC processor 

implementation for point multiplication on Field Programmable 
Gate Array (FPGA) is proposed. A new segmented pipelined full-
precision multiplier is used to reduce the latency and the Lopez-
Dahab (LD) Montgomery point multiplication algorithm is 
modified for careful scheduling to avoid data dependency 
resulting in a drastic reduction in the number of clock cycles 
required.  The proposed ECC architecture has been implemented 
on Xilinx FPGAs Virtex4, Virtex5 and Virtex7 families. To our 
knowledge, our single multiplier and three multipliers based 
designs show the fastest performance to date when compared to 
reported works individually. Our one multiplier based ECC 
processor also achieves the highest reported speed together with 
the best reported area-time performance on Virtex4 (5.32 µs at 210 
MHz), on Virtex5 (4.91 µs at 228 MHz), and on the more advanced 
Virtex7, (3.18 µs at 352 MHz). Finally, the proposed three 
multiplier based ECC implementation is the first work reporting 
the lowest number of clock cycles and the fastest ECC processor 
design on FPGA (450 clock cycles to get 2.83 µs on Virtex7).  
 

Index Terms— High Speed ECC, Point Multiplication, Low 
Latency, Pipelined Bit Parallel Multiplier, Field Programmable 
Gate Array 

I. INTRODUCTION 

LL IPTIC curve cryptography (ECC) was proposed by 
Koblitz [1] and Miller [2] in 1985 individually. Public key 

cryptography based on ECC provides higher security per bit 
than its RSA counterpart [3]. ECC has some additional 
advantages such as a more compact structure, a lower 
bandwidth, and faster computation that all make ECC usable in 
both high speed and low resource applications. The National 
Institute of Standards and Technology (NIST), US has proposed 
a number of standard Elliptic curves over binary fields ܨܩ(2m) 
[5]. Binary field curves are suitable for hardware 
implementation as field arithmetic operations are carry free. 
FPGA based ECC hardware design is increasingly popular 
because of its flexibility, shorter development time scale, easy 
debugging and continual improvement of the technology (lower 
power and higher performance FPGAs). 

   Many high performance ECC processor implementations 
on FPGA have been reported in the literature; the most relevant 
are presented in [10], [11], [12], [13], [14], [15], [16], [17], [20], 
[21], [22], and [23]. The common optimizing technique of high 
speed designs is the reduction of latency (number of clock 
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cycles) of a point multiplication (PM). To achieve low latency 
for a PM, these works adopted either parallel multipliers or 
large size multipliers at the expense of additional area 
complexity; pipelining stages are also often used to increase 
clock frequency at the expense of few extra clock cycles and 
area overheads [10, 12]. In addition, the pipelining stages in the 
multipliers create idle cycles at the PM level if there is data 
dependency in the instructions. As a result, careful scheduling 
is required to take full advantage of pipelining. Indeed, recently 
we have reported the highest throughput and highest speed   
ECC designs on FPGA in [24, 25] by using novel digit-serial 
and bit parallel multipliers together with efficient scheduling 
and pipelining techniques.  

In this paper we extend our work in [24, 25] to yield two 
important contributions to the state of the art. First is the fastest 
and also crucially with the best area-time metric ECC design on 
FPGA to date to the best of our knowledge.  And secondly, we 
report an even faster ECC processor design with the lowest ever 
latency (clock cycles) that achieves the performance of the 
theoretical limit. These are achieved via a novel pipelining 
technique that enables high clock frequencies to be attained and 
via a thorough investigation of the different combinations of the 
field multipliers to evaluate the performance limits for high 
speed applications. Below are listed the key contributions to the 
results: 
 A full precision ܨܩ(2m) multiplier with segmented 

pipelining to reduce both latency and area. 
 A one multiplier-based architecture for the ECC processor 

design targeted at high performance but with low area 
(fastest ECC processor with best area and time 
complexities). 

  A three multipliers-based architecture for the ECC 
processor design aimed at the highest possible speed.  

 A modified Montgomery point multiplication algorithm to 
avoid extra latency due to our two-stage pipelining in the 
field multiplier and use of careful point multiplication 
scheduling to reduce latency. 

 A pipelined Moore finite state machine (FSM) based 
control unit is designed to avoid data dependency in the 
arithmetic operations by introducing an extra cycle 
delay.  

 Data is tapped from different pipeline stages to localize 
some arithmetic operations and avoid memory input-output 
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operations.  
 A repeated square over square circuit (capable to perform 

a 4-square or quad square operation in a single clock cycle) 
to reduce latency for the multiplicative inversion operation  
based on Itoh-Tsujii algorithm [9].  

 Finally, we use Xilinx ISE timing closure techniques to 
achieve the best possible high performance results 

The rest of this paper is organized as follows: Section II  
presents the background of ECC and associated arithmetic 
operations over GF(2m); full-precision multiplication is also 
discussed in this section. Our proposed full-precision GF(2m) 
multiplier is presented in Section III . Sections IV , and V cover 
the proposed ECC processor architectures. In Section VI,. the 
implementation results are presented, and compared to the state 
of the art. Finally, this paper is concluded in Section VII. 

II.  ECC BACKGROUND AND ITS ARITHMETIC  OVER GF(2M) 

A. Scalar Point Multiplication 

The main operation in ECC is scalar point multiplication, ܳ ൌ ݇ܲǡ, where ݇ is a private key (integer), ܳ is a public key 
and ܲ is a base point on an elliptic curve, ܧ. The public key, ܳ 
is computed by k times point addition operation: ܳ ൌ ݇ܲ ൌ ܲ  ڮ  ܲ  ܲ                                          (1) 

If the public, ܳ  and ܲ  are known then the private ݇ is difficult 
to retrieve. An elliptic curve over ܨܩ(2m), ܧ can be defined as:                         ݕଶ  ݕݔ ൌ ଷݔ  ଶݔܽ  ܾ                             (2)     
Where ܽǡ ܾ א ܾ  ,(2m)ܨܩ  ് Ͳ and a point at infinity is ߠ such 
that  ଵܲ  ߠ ൌ ଵܲ  where ଵܲ ൌ ሺݔଵǡ ଵǡݔଵሻ  and  ሺݕ ଵሻݕ א   ሺʹሻǤܨܩ

The point multiplication ݇ ܲ is achieved by using scalar point 
multiplication algorithms utilizing point addition and point 
doubling depending on the ith value of ݇ǡ ݇ [4].  

Scalar point multiplication can be affine coordinates based 
or projective coordinates based. Because of the expensive 
inversion operation involved in affine coordinates based 
algorithms, projective coordinates based point multiplication is 
a more common choice for ECC hardware implementation. In 
this paper, the Lopez–Dahab Montgomery (LD) point 
multiplication is considered. This algorithm, requires 6 field 
multiplications, 5 field squaring operations and 4 addition 
operations as shown in algorithm 1 [6]. The LD algorithm is 
generally faster to implement, and leads to improved 

parallelism and resistance to side channel power attack    

B. Field Arithmetic over GF(2m) 

Field multiplication, field squaring, field addition and field 
inversion operations are involved in a point operation. Addition 
and subtraction are equivalent over GF(2m), which are very 
simple bitwise  xor operations. 

Field inversion is very costly in term of hardware and delay. 
In projective coordinates, an inversion operation is used for the 
projective to affine coordinates conversion that can be achieved 
with multiplicative inversion. The Itoh-Tsujii [9] algorithm is 
selected as it requires only logଶሺ ݉ሻ multiplications and (m-1) 
repeated squaring operations. In projective coordinates based 
implementations, overall performance depends on the 
performance of the field multipliers.  

C.  Full-precision Multiplier for ECC Application 

For high speed ECC application, the field multiplier is the 
main part of the arithmetic unit compared to the field squaring 
and field addition circuits due to the high area and time 
complexities of the multiplier. The performance of the 
multiplier affects the overall performance. The performance of 
the multiplier depends mainly on the size of the multiplier. A 
larger size multiplier reduces latency to speed up the point 
operation; however, the critical path delay is increased. Thus, 
pipelining is often adopted to shorten the critical path delay. 
Moreover, some multiplication algorithms (such as Karatsuba) 
are used to improve area and time complexity [10, 11, 23].  For 
the high-speed end of the design space, large digit serial 
multipliers or bit parallel multipliers (such as school book and 
Mastrovito) are often used. The bit parallel multiplier takes one 
clock cycle latency, which can be an attractive option to speed 
up the point multiplication.  

The field multiplication for ECC over GF(2m)is divided into 
two parts: the GF2 multiplication part (GF2MUL) and the 
reduction part. For a large size multiplier, the GF2MUL part is 
costly compared to the reduction part [18]. Thus, the main 
optimization of the large multiplier is concentrated on the 
GF2MUL part. There are several high performance bit parallel 
multipliers in the literature [11], [19], [20], [26], and [27]. The 
complexity of a bit parallel multiplier can be quadratic or 
subquadratic [18]. A quadratic multiplier achieves higher speed 
by consuming higher area than that of a subquadratic multiplier. 
Subquadratic multipliers are mostly based on the Karatsuba 
algorithm to reduce the area complexity at the expense of a 
lower clock frequency. The performance of the Karatsuba based 
bit parallel multiplier is improved by adopting pipelining 
techniques [11]. In the next section, we present a novel high 
performance full-precision GF(2m) multiplier  with segmented 
pipelining. 

III.  PROPOSED GF2M MULTIPLIER WITH SEGMENTED 

PIPELINING  

The proposed full-precision GF(2m) field multiplier 
(including reduction) with segmented pipelining is shown in  
Fig. 1 and consists of two stages pipelining to improve clock 
frequency.The first stage pipelining is the proposed segmented 
pipelining to break the critical path delay of the GF2MUL part, 
which is similar to the presented work in [7]. In the segmented  
pipelining, we divide the m bit multiplier operand into n number 

Algorithm 1:  LD Montgomery Point Multiplication over GF(2m) [6] 

INPUT: ݇ ൌ ሺ݇௧ିଵǡ ǥ ǡ ݇ଵǡ ݇ሻଶ with ݇ ௧ିଵ ൌ ͳǡ ܲ ൌ ሺݔǡ ሻݕ ג  ଶሻܨሺܧ
OUTPUT: ݇  

Initial Step:  ܲሺ ଵܺǡ ܼଵሻ ՚ ሺݔǡ ͳሻǡ ʹܲ ൌ  ܳሺܺଶǡ ܼଶሻ ՚ ሺݔସ  ܾǡ  ଶሻݔ
For ݅  from ݐ െ ʹ downto 0 do 
If ݇ ൌ ͳ then 
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌܲ൫ ଵܺǡܼଵ൯   ܳ൫ܺଶǡܼଶ൯ 

Point Doubling: ܳ ሺܺଶǡ ܼଶሻ ൌʹܳሺܺଶǡ ܼଶሻ 
1. ܼଵ ՚ ܺଶǤ ܼଵ 
2. ଵܺ ՚ ଵܺǤ ܼଶ 
3. ܶ ՚ ଵܺ  ܼଵ 
4. ଵܺ ՚ ଵܺǤ ܼଵ 
5. ܼଵ ՚ ܶଶ 
6. ܶ ՚ Ǥݔ ܼଵ 
7. ଵܺ ՚ ଵܺ  ܶ 
8. Return ܲሺ ଵܺǡ ܼଵሻ 

1. ܼଶ ՚ ܼଶଶ 
2. ܶ ՚ ܼଶଶ 
3. ܶ ՚ ܾǤ ܶ 
4. ܺଶ ՚ ܺଶଶ 
5. ܼଶ ՚ ܺଶǤ ܼଶ 
6. ܺଶ ՚ ܺଶଶ 
7. ܺଶ ՚ ܺଶ  ܶ 

Return ܳሺܺଶǡ ܼଶሻ 
Conversion Step: ݔଷ ՚ ଵܺȀܼଵ Ǣ ଷݕ ՚ ሺሺݔ  ଵܺሻ ܼଵΤ ሻሾሺ ଵܺ  ଵሻሺܺଶܼݔ ܼݔଶሻ  ሺݔଶ  ሻሺܼଵܼଶሻሿ(xܼଵܼଶሻିଵݕ   Ǥݕ
 



of w bit long digit multiplier operands. Then, we multiply the m 
bit multiplicand by each of the w bit multipliers. The results of 
the w digit size multiplier is m+w-1 bit long. We save each of 
the results in the m+w-1 size pipelining register. Here, we save 
n multiplications results in the n number of   m+w-1 size 
registers. The outputs of the m+w-1 sizes registers are aligned 
by shifting (logically) w bits from each other followed by xor  
operations (addition). The result of the addition is 2m-1 bit long 
is then reduced to m bit in the reduction unit. In the reduction 
unit, we reduce 2m-1 bit to m bit multiplier output using a fast 
irreducible reduction polynomial [4][5]. The output of the 
reduction unit is applied to the second stage pipelining register. 
Thus, there are two pipelining stages and hence, the proposed 
multiplier consumes only 2 clock cycles as an initial delay to 
perform multiplication. The pipelining of the multiplier divides 
the total critical path delay into two parts: the critical path delay 
of GF2MUL, ܶ  ሺ݈݃ଶሺ ݉ ݊Τ ሻሻ ܶ and the critical path delay of 
the reduction part using the fast NIST reduction polynomial (r-
nomial), ሺlogଶሺሺ ݊   ሻሻ ܶ as shown in Table 1[4,7]. Bothݎʹ
critical path delays depend on the size of the segment, w. Thus, 

any one of the two critical paths can be the critical path of the 
multiplier.  The optimum critical path can be defined by the 
optimum size of w which can be determined by a trial and error 
method.   

A one stage pipelining (segmented pipelining) achieves 1 
clock cycle delay. The critical path delay of the multiplier is the 
combination of the MULGF2 and the reduction part, which 
is ܶ  ሺlogଶሺ ݉ ݊Τ  ݊   ሻሻ ܶ.  Again, the critical pathݎʹ
delay can be modulated by changing the size of the segment of 
the multiplier. The optimum size of the segment of the 
multiplier can be also achieved by using a trial and error 
method. In Table 1, we present space and time complexities of 
our proposed multipliers and we compare these with quadratic 
and subquadratic bit parallel multipliers reported in [19],  [20], 
[26], and [27]. In the theoretical analysis of the quadratic and 
subquadratic multipliers, the quadratic bit parallel multiplier  
has twice as high speed as the speed of the subquadratic, but, 
the quadratic multiplier consumes 2.56 times more area [19]. 
Moreover, the authors in [19] compare the implementation 
results of the two bit parallel multipliers where they show the 
ratio (Quadratic/Subquadratic) is 1.5 in terms of area and 0.625 
in terms of delay. Their implementation results show that the 
quadratic bit parallel multiplier can achieve higher speed, and 
the area-time product of the subquadratic multiplier 
outperforms the quadratic multiplier by only 6.65 %. Therefore, 
a quadratic multiplier is considered a better option for high 
speed ECC implementation when area is not a constraint; for 
example, the quadratic multiplier in [26] and its improved speed 
version in  [27] both based on a matrix-vector method 
(Mastrovito) can achieve improved speed on a subquadratic 
multiplier [19] but with larger area.  

An analytical complexity analysis for the multipliers is 
shown in Table 1. Our proposed multiplier consumes similar 
area to the multipliers in [19], [20], [26] and [27] ( m2>>(ሺ݊ െͳሻ݉  ሺݎ െ ͳሻ݉). But, its regular structure makes it more  
suitable for pipelining, hence offers more scope for higher 
speed performance. Our proposed multiplier has a very short 
critical path compared to the reported parallel multipliers;  
hence, can show better area-time performance due to its high 
speed advantage. For the area complexity, our proposed  
multiplier consumes the same resources of XOR and AND gates 
as that of the quadratic bit parallel multiplier and uses flip flops 
(FFs) to reduce the critical path delay. For illustration, an 

 
Fig. 1. Proposed Segmented Full-precision Multiplier over GF(2m).  

TABLE I 
LATENCY, CRITICAL PATH DELAYሺ ܶ௨ ) AND RESOURCES OF PROPOSED FULL-PRECISION MULTIPLIER OVER ܨܩሺʹሻ 

Ref Type CCs #XOR #AND #FFs Critical path delay(Tmul) 
[19] Quadratic 1 ݉ଶ െ ͳ ݉ଶ - ܶ  ሺͳ  logଶሺ ݉ሻሻ ܶ 
[19] Subquadratic 1 ͷǤͷ݉୪୭మሺଷሻ െ ͵݉  ͲǤͷ ݉୪୭మሺଷሻ - ܶ  ሺʹ logଶሺ ݉ሻ  ͵ሻ ܶ 
[20] Pipelined-Quadratic 1 ݉ଶ  ͵݉ ݉ଶ 40m ܶ  ሺሺ݉ ሻΤ  logଶሺ ݉ሻሻ ܶ 
[26] Mastrovito 1 m(m-1)+3(m-1) ݉ଶ - ܶ  ሺ݈݃ଶሺ Ͷ݉  ͳʹݑ െ ʹͳሻ ܶ 
[27] Mastrovito with SPB 1 ݉ଶ  ͵݉ െ  ݉ଶ - ܶ  ሺͳ  ଶሺ݈݃ ʹ݉  ݑ െ ͳሻ ܶ 

OUR MUL. 
Fig. 2 

Full-precision 
 (Segmented pipelined) 

1 ݉ሺ݉ െ ͳሻ  ሺ݊ െ ͳሻ݉ ሺݎ െ ͳሻ݉ 
݉ଶ n(m+w-1)+m ܶ  ሺlogଶሺ ݉Τ݊ ሻሻ ܶ 

or ሺlogଶሺሺ ݊   ሻሻ ܶݎʹ
OUR MUL. 

Fig. 3 
Full-precision 
 (Segmented pipelined) 

1 ݉ሺ݉ െ ͳሻ  ሺ݊ െ ͳሻ݉ ሺݎ െ ͳሻ݉ 
݉ଶ n(m+w-1) ܶ  ሺlogଶሺ ݉Τ݊  ݊  ൌ ݓ ሻሻ ܶݎʹ  segment sizeǡ ݊ǡ ͓Segments = ݉ Τݓ , ݂ ሺݔሻ ൌ ݔ  ݔ  ݔ  ݔ   ͳ ݎ ݂ሺݔሻ ൌ ݔ  ݔ  ͳ ݎ ݂ሺݔሻ ൌ ݔ  ሺ௨ାଵሻݔ  ௨ݔ  ݔ  ͳ  . ܶ and ܶ are 

AND and XOR gates delays respectively, p =  # pipelining stages, CCs= Clock Cycles, SPB= shifted polynomial basis, r= 5 (for penta) or 3 (for tri) nomial. 



approximate1 area-time complexity analysis is quantified over 
GF(2163) for the various multipliers and sketched in Fig. 2. The 
results show that the proposed multiplier outperforms the 
reported multipliers in [19], [20], [26] and [27] in terms of area-
time performance.  

IV.  PROPOSED HIGH PERFORMANCE ECC (HPECC) FOR 

POINT MULTIPLICATION  

In this section, we present careful scheduling in the point  
addition and point doubling operations, a novel pipelined full-   
precision multiplier and other supporting units to achieve high   
speed, low latency while optimizing area complexity. 

A. Point Multiplication without Pipelining Delay 

In general, the Montgomery point addition and point  
doubling in the projective coordinates requires a total of six   
field multiplication, five field squaring and four field addition 
operations equivalent latency if implemented serially according 
to Algorithm 1 [6]. If the field squaring and field addition 
operations can be operated concurrently with multiplication 
then the point operations latency will be equivalent to the 
latency of the six field multiplications. The six multiplications 
can, for example, be computed in two steps using three 
multipliers or in   three steps using two multipliers or in six steps 
by serial multiplications using one multiplier [17], [13] and  
[10]. Again, the digit size can affect the performance of ECC; 
for example, a bit serial implementation takes m cycles, a digit 

 
1 Based on Xors only as this is also done by references [ 26,27]; ANDs 

complexity is the same for all. 

 cycles and a bit parallel (ݓ / ݉) serial one takes (bits ݓ)
implementation takes a single clock cycle [8], [12] and [11]. In 
the case of high speed design, digit serial multipliers are 
considered to reduce latency. The disadvantage of large digit 
serial multipliers is lower clock frequency. Thus, pipelining  
stages are applied to improve clock frequency [12]. The clock  
frequency can be improved with the increase of the number of 
pipelining stages in breaking the critical path delay. The main 
disadvantages of increasing the number of pipelining stages in 
the high-speed end of the design space are the increase in the 
number of clock cycles per multiplication and overcoming data 
dependency [12]. To avoid pipelining delay, optimal scheduling  
of the field operations of the point multiplication is necessary 

Our first proposed ECC processor architecture is shown in 
Fig. 3. It comprises a full-precision m bit multiplier with two  
stages pipelining, one squaring circuit, one quad squaring 
circuit and two addition circuits in order to accomplish point 
operations (point addition and point doubling) within six clock 
cycles. To achieve six clock cycles based point operations, we 
include some strategies in the point operations of the 
Montgomery point multiplication algorithm as shown in 
Algorithm 2 [24]. In the proposed algorithm, we combine point 
addition and point doubling to avoid data dependency. In the  
point multiplication, a particular loop is overlapped with its 
next loop by 2 clock cycles due to two stages pipelining. Thus, 
state1 (st1) and state2 (st2) depend on the previous key bit, ݇ାଵ. 
For example, if previous bit, ݇ାଵ ൌ ͳ then the last output will 
be ଵܺ otherwise  ܺଶ. The last output of a loop decides the 
sequence of st1 and st2 in the next loop. The rest of the states 
depend on the current bit of ݇ǡ  ݇. To support a six clock cycle 
based algorithm, we apply a squarer or double square (Quad 
Square) or both operations in parallel along with the 
multiplication. Again, one of the field adders is placed in the 
common data path to add on the fly. The second adder is used 
to add the two outputs of the multiplier as shown in Fig. 3. Both 
adder circuits can add two of their inputs or can transfer either 
of the inputs, if we need either. Moreover, we can save some 

 
 

Fig. 2. Comparative Area and Delay Performance of Bit-Parallel GF(2m) 
Multiplication (m=163, n=12, r=5 and u=3) 

Algorithm 2:  Proposed Combined LD Montgomery Point 
Multiplication (for 6 clock cycles) 
For ݅  from ݐ െ ʹ down to 0 do  
If ݇ ൌ ͳ then 
If ݇ାଵ ൌ ͳ then If ݇ାଵ ൌ Ͳ then 
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌ ܲ൫ ଵܺǡܼଵ൯   ܳ൫ܺଶǡܼଶ൯ and Point Doubling: ܳሺܺଶǡ ܼଶሻ ൌ ʹܳሺܺଶǡ ܼଶሻ 
St1: ܼ ଵ ՚ ܺଶǤ ܼଵ; ܣ ՚ ܼଶ                 
St2: ܺ ଵ ՚ ଵܺǤ ܼଶ, ܼଶ ՚ ଶ ;                                 ܴଶܣ ՚ ܣ ; ସܣ ՚ ܺଶ           

St1: ܼ ଶ ՚ ଵܺǤ ܼଶ; ܣ ՚ ܼଶ                 
St2: ܺ ଶ ՚ ܺଶǤ ܼଵ; ܼଶ ՚ ଶ;                                  ܴଶܣ ՚ ܣ ; ସܣ ՚ ܺଶ           

St3: ܺଶ ՚ ܾǤ ܴଶ  ସ ;   ܴଵܣ ՚  ଶܣ
St4: ܼଶ ՚  ܴଵǤ ܼଶ,  ܣ ՚ ଵܺ  ܼଵ  
St5:  ଵܺ ՚ ଵܺǤ ܼଵ,   ܼଵ ՚  ଶܣ
St6:  ଵܺ ՚ Ǥݔ ܼଵ   ଵܺ. 
Conversion Step: Same as Algorithm 1. 

 

 
Fig. 3. Proposed High Performance ECC Processor Architecture 
 



intermediate results of field operations in the local registers (R1, 
R2, M and accumulator, A.) to avoid loading/unloading to the 
main memory. As a result, we can avoid idle clock cycles due 
to the memory input-output operations. A data flow diagram is 
shown in Fig. 4 to demonstrate the proposed combined point 
operations.  In this diagram, we explain point operations for ݇ାଵ ൌ ͳ  , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ where ݇   is the current bit, ݇ାଵ is the previous bit and ݇ିଵ is the next bit of key (݇).  In 
this data   flow diagram, we show the loop operation of the point  
multiplication in projective coordinates. In our implementation, 
a multiplication takes three clock cycles due to two stages 
pipelining and a square operation takes two clock cycles where 
one clock cycle is used to load in the accumulator (A) register. 
The addition operation is realized in the common data path and 
accomplished in the same clock cycles. As we used two stage 
pipelining and there is a data dependency in between two loops, 
we use careful scheduling. In this scheduling, the present loop 
operation of point multiplication is overlapped with the next 
loop operations.  

 We see, the starting state, st1 of a particular loop 
depends on the value of previous bit,  ݇ାଵ. If the 
previous bit, ݇ ାଵ ൌ ͳ means ܺଵ is not ready. Then, we 
start from st1 with the multiplication between   ܺଶ and ܼଵ instead of ܺ ଵ  and ܼ ଶ . In this case, The st2 is the 
multiplication  between ܺଵ  and ܼ ଶ.  

 The  ܺ ଵ  operand of  the st2 is calculated by addition 
of two outputs(Mula_out and  Mulb_out in Fig. 1) of 
the multipliers where one output(from Mula_out) is 
tapped after the reduction unit (dotted arrow) and the 
other one from the multiplier output(Mulb_out). The 
other operand of st2 is ܼଶ  which is already saved in 
the memory in st1 to use in st2. Here, the delay of the 
memory operation (accessing ܼଶ) is utilized to 
calculate ܺ ଵ; again, as ݇ ൌ ͳ, we need  the square and 

quad square of  ܼଶ. Thus, we save ܼଶ in the memory 
and accumulator simultaneously in st1 to achieve the 
squaring operations of ܼଶ in the st2.  The output of the 
square circuit (ܣଶ ൌ ܼଶଶ) is saved in the memory and 
the output of quad square (ܣସ ൌ ܼଶସ) is saved in the 
local register, ܴ ଶ  (dotted box). We can use data from 
the local register (dotted box)  immediately without 
doing any memory operations to save clock cycles.  

 Similarly, during st2, st3 and st4, the squaring 
operations of   ܺଶ is realized by saving in the 
accumulator through B-bus; in this case, the square 
output, ܣଶ ൌ ܺଶଶ is saved in the local register, ܴଵ 
whereas the quad square output, ܣସ ൌ ܺଶସ  is saved in 
the memory. In st3 and st4, one of the multiplication 
operands is used from the memory and the other 
operand from the local registers.  

 In st4, ܼ ଵ (result of ܺ ଶǤ ܼଵ) is ready to save in the 
memory to use in st5. Again in st4, the available 
output, ܼ ଵ  is required to add with the multiplication 
result of ܺ ଵ on the fly. At this time, we access (tapping)  ଵܺ  from the output of the reduction unit (dotted arrow, 
one cycle earlier than the normal output) to add with ܼଵ  followed by saving in the accumulator to do the 
square operation to get a new ܼଵ.  

 The new ܼ ଵ  is ready in st5 to save in the memory and 
is required in the st6 and the next loop. In st5, the old ܼଵ (saved in st4) is used for multiplication with ଵܺ  
where ܺ ଵ  is directly collected from the multiplier 
output followed by saving in the local register, ܯ. We 
can manage ܺଵ   to use immediately for multiplication 
by using the instruction delay (pipelined Moore 
machine based control unit) of accessing the old ܼଵ 
from memory. 

  In st6, we add   ܺଶ (from memory) on the fly with the 
multiplier output to get new  ܺଶ followed by saving in 
the memory. Again, the multiplication in st6 is in 
between the base point, ݔ and new  ܼ ଵ  is completed 
after two clock cycles. But, a new loop is started after 
st6.  

Thus, the st1 of the new loop depends on the last coordinate 
of the previous loop, ܺଵ (in this case of ݇ାଵ ൌ ͳ  , ݇ ൌ ͳ and ݇ିଵ ൌ ͳ) which   is calculated by adding the results of the 
multiplications started in st5 and st6. 

     In Fig. 5, we demonstrate the loop of point multiplication 
for ݇ାଵ ൌ Ͳ  , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ. The previous bit of ݇, is ݇ାଵ ൌ Ͳ means coordinate   ܺଶ of the last loop is not ready to 
start with. 

 In this case, the first state (st1) is started with 
multiplication between ܺଵ  and ܼ ଶ. In this state, the 
multiplier output (ܼ ଵ) started from st4 of the previous 
loop is saved in the memory to using in the next state 
(st2). In the same state, we need  to start the squaring 
operation on ܼ ଶ. Thus ܼ ଶ is accessed from memory 
through the A_bus for multiplication and through the 
B_bus into the accumulator for squaring.   

 In st2, the multiplication is  ܺଶ. ܼଵ; where ܺଶ is 

 

 
Fig. 4. Data flow of HPECC for ݇ାଵ ൌ ͳ  , ݇  ൌ ͳ and ݇ ିଵ ൌ ͳ 



calculated by adding two outputs of the multiplier and 
then is saved in the ܯ register for use in the next 
cycles to multiply with ܼ ଵ. In the same time, the 
calculated   ܺଶ is required and saved in the 
accumulator for squaring as ݇ ൌ ͳ.  

     The rest of the states of Fig. 5 are similar to Fig. 4. 
 

B. Multiplier with Segmented Pipelining for HPECC 

We consider the two extreme field sizes in the NIST standard 
[5] i.e GF2163 and GF2571 to evaluate the ECC performance. In 
the implementation over GF2163, we select ݓ ൌ ͳͶ bit to get 12  
of the 14 digit serial multiplication results. The results then are 
loaded in the twelve 177 bit long registers. Thus the critical path 
of MULGF2 depends on one two input AND gate and 13 layers 
of two input XOR gates to achieve a 14x163 multiplication. 
Again, the 12 pipelining register outputs are shifted and xored 
(for accumulation) to get the full-precision multiplication result 
(2m-1) without reduction. The result is then reduced into 163 
bit in the reduction unit using the fast irreducible reduction 
polynomial [5]. The reduced result is saved in the second stage 
pipelining register. Thus, the architecture works like 12 (14-bit) 
digit serial multipliers are operating in parallel followed by a 
full precision reduction operation. The reduction unit consists 
two parts:  the accumulation part and the reduction part. The 
accumulation part has 11 layers of 2 inputs XORs and the 
reduction part has 2r ( r-nomial irreducible polynomial) layers 
of 2 input XORs. Thus, the critical path delay is balanced 
theoretically. Again, in the ECC processor implementation over 
GF2571, we also consider the segment size of 14 bit. 

C. Square Circuit, Memory Unit and Control Unit of HPECC  

Our proposed high speed ECC processor design operates by 
using six clock cycles for each loop of the point multiplication.   
To achieve the six cycles point multiplication loop, we need a 
quad square (4-square) circuit to do a one clock quad square 

operation. The quad squaring is used in the st2 and st3 along 
with field multiplication as shown in our proposed Algorithm 
2. Again, the latency of the conversion step contributes a 
significant amount to the total latency of the proposed ECC 
processr as the latency of the loop operation is comparable with 
that of the conversion step. In the conversion step, the inversion 
operation consumes the major part of the latency in our 
projective based ECC processor implementation, a 
multiplicative inversion is applied for the projective to affine 
coordinate conversion. Several multiplications and m steps 
repeated squaring operations are required. Thus, we can utilize 
the quad square circuit for speeding up the inversion by 
reducing the number of the repeated square operations. In our 
proposed architecture, we use a register (accumulator) in the 
arithmetic data path to achieve a repeated quad square 
operation without loading to the main memory. Thus, we need 
1 clock cycle for a 4-square, 2 clock cycles for an 8-square and 
so on.  

     We design a friendly memory unit that is developed in a 
single behavioral entity which comprises an accumulator and 
8xm register file. The register file is based on distributed RAM 
to give high performance and flexibility. There are five input-
output buses in the memory unit. Particularly, our register file 
consists of three output buses (A, B, D) and one input bus. Data 
through A-bus and B-bus takes one more cycle delay than data 
through D-bus as shown in Fig. 3. Data from D-bus is dedicated 
to the multiplier input through the  M register. Hence, the two 
outputs of the memory through A-bus and B-bus, and the output 
of M (through D-bus) are synchronized.  The  M register acts as 
a pipelining register between the input and the output of the 
multiplier and also saves local data for the multiplier. The 
memory unit offers flexibility to access any data from any 
location of the memory through each of the output buses 
independently. The memory unit takes one cycle for a write 
operation and one cycle for a read operation. The accumulator 
is designed in the same entity of the memory unit and utilizes 
unused resources (flip-flops) of the memory unit.  Apart from 
our memory unit, we deploy local registers R1  and  R2 ; R1 and 
R2 are used to save outputs of square and quad square 
respectively. Thus, the local registers (R1  and R2) and M  save 
outputs of concurrent operations to avoid the idle state that is 
due to the common input bus of the memory unit,  and also 
avoid the data dependency in the successive point operations 
loop.  

    A pipelined Moore finite state machine based control unit 
is developed in the single behavioral entity. The Moore 
machine takes one clock cycle delay to address the memory 
unit. The advantage of this initial instruction delay is a more 
flexible data control that allows for some intermediate 
operations to be carried out during this cycle delay with the help 
of the local registers. Again, the control unit consists of very 
few states to complete a point multiplication due to the full-
precision multiplier and concurrent operations. As a result, the 
control unit consumes very low area while helps keeping speed 
very high. 

 
Fig. 5. Data flow of HPECC for ݇ାଵ ൌ Ͳ  , ݇  ൌ ͳ and ݇ ିଵ ൌ ͳ 



D. Critical Path Delay and Clock Cycles of the HPECC  

Our proposed high speed ECC (HPECC) processor design 
uses a segmented pipelining based full-precision multiplier to  
achieve six clock cycles for each loop of the point 
multiplication. The critical path delay of the ECC mainly  
depend on the critical path of the multipliers. Again, the 
proposed multipliers critical path delay can be the critical path 
delay of the GF2MUL part or the reduction part depending on 
the size of the segment. As the multiplier output (Mula_out) is  
taped at end of the reduction part, and passed through the adder  
and multiplexer followed by saving in the M register, the critical 
path delay of the ECC can be the delay of the reduction 
part+adder + mux. The critical path delay of the ECC processor 
architecture is shown in Table II.  The main focus of our 
proposed ECC processor is the reduction in the number of clock 
cycles. Particularly, our design can manage to take 6 clock 
cycles for each loop of the point multiplication in the projective 
coordinates. The total clock cycles for point multiplications is 
the sum  of three main parts: affine coordinates to projective 
coordinates initialization, point multiplication in the projective 
coordinates and finally projective coordinates to  affine 
coordinates conversion.  The total number of clock cycles 
(CCs) for point multiplication = 5 CCs (required for 
initialization) + 6x(m-1) CCs  (for point multiplication in the 
projective coordinates) + CCs (for the final coordinates 
conversion = m/2 CCs for square + #Mul for inversion x3 +3 
CCs for Inversion + 28 CCs for others) + 3 clock cycles for 
pipelining as shown in Table III. The others clocks cycles are 
that are independent of curve sizes included: 10 multiplications, 
6 addition and 1 square operations.  For example, the total clock 
cycles for point multiplication over GF2163= 5+(6x162)+139(= 
(81+27+3) +28) +3=1119 cycles. Similarly, the latency of 
HPECC processor over GF2571 is 3783 clock cycles. 

V. PROPOSED LOW LATENCY ECC (LLECC) PROCESSOR FOR 

POINT MULTIPLICATION  

The speed of ECC can be improved for high speed applications 
by reducing latency of the point multiplication. Parallel full-
precision multipliers can reduce latency to speed up the point 
operations. We proposed a high speed ECC processor for point 
multiplication utilizing three full-precision multipliers to achieve  
the lowest latency high speed ECC as shown in Fig. 6.  

A. Low Latency Montgomery Point Multiplication 

Montgomery Point multiplication offers flexibility of parallel 
field operations; there are six field multiplications in the 
projective coordinates based Montgomery point multiplication, 
as shown in Algorithm 1, all which can be carried out in parallel 
based on data dependency. In addition, the Montgomery 
algorithm exhibits the low data dependency as it employs only 
x coordinates [4].  

The six multiplications can be achieved in two steps by using 
three full-precision multipliers as shown in Algorithm 3. To 
achieve the theoretical limit of the loop operation, an ECC 
processor architecture needs single clocked field multipliers 
along with concurrent square and addition operations, all with 
careful scheduling. In our implementation here we target and 
achieve this limit which to our knowledge, no previously 
reported implementation has achieved to date due to the hitherto  
restrictive performance of the field multiplier. We propose a 
modified Montgomery point multiplication loop based on two 
steps using three full precision multipliers (Mul1, Mul2  
(highlighted) and Mul3 )  as shown in Algorithm 3. In each state 
of the proposed algorithm, three multiplications outputs are 
concurrently used for additions, square and square over square 
(4-square) to generate the required output for the next states as 
shown in Fig 6. Mul1, Mul2 and Mul3 are the three multipliers 
that multiply the three different multiplications involved in each 
step of Algorithm 3 in a single clock cycle. Again, the adder and 
cascaded square circuits are in the same data path of the 
multiplier output to perform addition, square and 4-square 
operations using the multipliers outputs.  

For the initialisation of Algorithm 3,  we save the required 
variables to start the loop operation in local registers (ܴଵ, ܴଶ, ܴଷ, ܴସ, ܴହ, and ܴ). For  a particular value of k, ݇ ൌ ͳǡ the 
multipliers Mul1 , Mul2 and Mul3 as shown in  Fig. 6 calculate    ܺଶ ՚ ܺଶǤ  ܴଵ ሼ ܴଵ ൌ ܼଵሽǡ ܼଶ ՚ ଵܺǤ ܴଷ ሼܴଷ ൌ ܼଶ ሽǡ       ܼଵ ՚ଵܺଶǤ ܴହ ൛ܴହ ൌ   ܼଶଶ ൟǤ In the same step, a  cascaded squaring of   ܺଶ is performed to obtain the 4-square operation ( ܴଶ ՚ ܺଶସ) 
followed by save in the R2 register. In step 2, one input of Mul1, ሺ ଵܺ  ܼଵሻଶ (and the other input, x from memory unit) is 
processed by adding the outputs of Mul1 and Mul2 using 
adder1 followed by squaring. The output of the squaring is also 
saved in the R1 register as  ܼଵ for the next loop. The Mul1 output  
and Mul2 are added by adder1  to get ଵܺǡ an input of step1 of 
the  Mul2 in the next loop. In the step2, the inputs of Mul2 are 
the outputs Mul1 (ܼଵ) and Mul2 ( ଵܺ). The Mul3 output (ܼଶ) of 
step1 is saved in the register ܴଷ in the step2 to use as an input 
of mul2 in the next loop and the Mul3 output, ܼଶ is squared 
( ܼଶଶ) and 4-squared ( ܼଶସ) using the cascaded square circuits 
then saved in the registers R4 and R5 .  Again, the inputs of Mul3 
of step2 are b from the memory unit and  ܼଶସ from register, R5 
and the multiplication output is added with the content of R2 

TABLE II 
CRITICAL PATH DELAY ሺ ாܶ) OF THE PROPOSED ECC  

Ref Critical path delay 
HPECC ܶ௨ or ሺlogଶሺ ݊  ሻሻ ܶݎʹ  ܶௗௗ  ʹ ܶ௨௫ 
LLECC ܶ௨  ܶௗௗ  ௦ܶ  ͵ ܶ௨௫ ݊ ൌ  ͓Segments, r is the r-nomial irreducible polynomial,  ܶ௨௫= 2x1 

mux delay. ௦ܶ=logଶሺ ݇ሻ, ܶ ௗௗ = ܶ ௫Ǥ 

 
Fig. 6. Proposed Low Latency ECC Processor Architecture 

 



(ܺଶସሻ using adder2 then inputted as ܺଶ, an input of mul1 in the 
next loop. Thus, the proposed architecture supports the 
calculation of all of  the new inputs for the  next loop such as ଵܺ, ܺଶ, ܼଵǡ andǡ ܼଶ  using the two steps of algorithm 3.  Apart  
from this, we utilize a smart scheduling to avoid data 
dependency in the successive loops. We a show data flow 
diagrams to illustrate the point operations for the different 
combinations of the previous, current and next values of   ݇ in 
Fig.7 and Fig 8.  
     The data flow diagram shown in Fig. 7 is  for the values of  ݇ାଵ ൌ ͳ, ݇ ൌ ͳ and ݇ିଵ ൌ ͳ. In this case, the point 
operations of the previous loop, current loop and next loop are  
the same, hence, there is no transition of the point operations in 
the successive loops. There are only two states (st1 and st2) for 
each loop to accomplish the field operations (i.e. multiplication, 
square and addition) for a point-multiplication loop operation. 
The field multiplication takes 1 clock cycle delay due to one 
stage pipelining; however, the field square and field adder have 
only combinational circuit delay and can be performed in the 
same clock cycle. In Fig. 7, the data diagram shows the 
utilization of three full-precision multipliers called Mul1, Mul2 
and Mul3 in each state to accomplish three multiplications. As 
the multiplier, adder and square circuits are cascaded, we can 
achieve different field operations in the same clock cycle by 
tapping the results respectively.  

 For example, in st1, Mul1 and Mul2 outputs 
(݅Ǥ ݁Ǥ ܼଵܽ݊݀ ଵܺ) are added and squared to get new  ܼଵ 
on the fly. The ܼଵ is immediately used in the next loop 
as an input to Mul1 and also ܼଵ is saved in Register 1 ሺܴଵ) to use in the next loop. Again, the output of Mul3 
is ܼଶ is squared and 4-squared in the same clock to get ܼଶଶ and ܼଶସ. After then, the three outputs (ܼଶ, ܼଶଶ and ܼଶସ)  are saved in ܴଷ, ܴସ and ܴହ  register respectively 
to use in the next loop.  

 In state st2, we get output  ଵܺ  by adding the outputs of 

Mul1 and Mul2 and we also get ܺଶ   by adding the 
output of Mul3 and the content of ܴ ଶ  (ܺଶସ). The ܺ ଶ  and 
its squareǡ ܺଶଶ  are directly applied as an input of Mul1 
and Mul3 respectively in the st1 of the next loop and 
also ܺଶ  is squared over squared (4-square)  to get ܺଶସ   
output in the same clock cycle is saved in the  ܴଶ for 
the next operation.  

Thus, all inputs that are required to begin the next loop are  
ready. The dataflow diagram is the same for the combination of 
values  ݇ାଵ ൌ Ͳ, ݇  ൌ Ͳ and ݇ ିଵ ൌ Ͳ  except that the variables 
are changed as shown in Algorithm 3.    
     In Fig7, a data flow diagram of the loop of point 
multiplication is presented for the values of  ݇ାଵ ൌ ͳ, ݇ ൌ Ͳ 
and ݇ିଵ ൌ Ͳ. The diagram shows three consequent loops (for  
six clock cycles) of data flow to illustrate the transition from the 
loop of  ݇ ൌ ͳ to the loop of the ݇ ൌ Ͳ.  

 In clock cycles 1 and 2, the point operations for the 
value of ݇ ൌ ͳ is performed. As the next loop for ݇ ൌͲ, the squared outputs of the loop (݇ ൌ ͳ) should be  ܼଵଶ, ܼଵସ, ଵܺଶ, and ଵܺସ instead of  ܼଶଶ,ܼଶସ, ܺଶଶǡ and ܺଶସ. In 
the loop, ܼଵଶ is calculated and saved in ܴହ in the st2. 
Again, the output ଵܺ of the loop will be squared and 4-
squared to get ଵܺଶ and ଵܺସ in the st1 of the next loop 
(݇ ൌ Ͳ).  

 In st1 of the loop of ݇ ൌ Ͳ (at clock cycle 3), the ଵܺଶ 
is used as Mul3 input, the ଵܺସ is saved in ܴଶ. In the 
same state, the content of ܴହ  ( ܼଵଶ) is squared to get ܼଵସ 
and saved in ܴସ.Thus, the second loop for ݇ ൌ Ͳ can 
be started with three multipliers inputs ܺଶ . ܼଵ, ଵܺ. ܼଶ 
and  ܼଵଶ. ଵܺଶ  after the previous loop (݇ ൌ ͳ). In this 
case, the loop (݇ ൌ Ͳ) inputs of Mul1 and Mul2 are 
the same as the inputs of the previous loop (݇ ൌ ͳ) 
due to the last output (the addition of  ܴଶ and Mul3) of 
the previous loop is ܺଶ; however, the outputs of the 
multipliers are different than that of the previous loop. 

 Now, the final loop is for ݇ ൌ Ͳ (clock cycles of 5 and 
6) is similar to Fig. 6, (no transition) except that the 
variables are changed as shown in Algorithm 3.  

Algorithm 3:  Proposed Low Latency Montgomery Point Multiplication 
(2 clock cycles based loop operation is shown) 

For ݅  from ݐ െ ʹ down to 0 do  

If ݇ ൌ ͳǡ ݇ାଵ ൌ ͳ   and ݇ ିଵ ൌ ͳ then{ No  transition} 
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌ ܲ൫ ଵܺǡܼଵ൯   ܳ൫ܺଶǡܼଶ൯ and Point Doubling: ܳሺܺଶǡ ܼଶሻ ൌ ʹܳሺܺଶǡ ܼଶሻ 

Mul1 Mul2 Mul3 
St1: ܼ ଵ ՚ ܺଶǤ  ܴଵ; ሼ ܴଵ ൌ ܼଵሽ  ଵܺ ՚ ଵܺǤ ܴଷǢ     ܼଶ ՚ ܺଶଶǤ ܴସǢ  ܴଶ ՚ ܺଶସ ;  

St2:  ଵܺ ՚ ሺݔǤ ሺ ଵܺ  ܼଵሻଶ         ଵܺ ՚ ଵܺǤ ܼଵሻ;          ܺଶ ՚ ܾǤ ܴହ  ܴଶ; 
          ܴଵ ՚ ሺ ଵܺ  ܼଵሻଶ                    ܴଷ ՚ ܼଶ          ܴହ ՚  ܼଶସ ; ܴସ ՚  ܼଶଶ ;  
else If ݇  ൌ ͳǡ ݇ାଵ ൌ ͳ and ݇ ିଵ ൌ Ͳ then{Transition :݇  ൌ ͳ to ݇  ൌ Ͳ} 
St1: ܼ ଵ ՚ ܺଶǤ  ܴଵ; ሼ ܴଵ ൌ ܼଵሽ    ܺ ଵ ՚ ଵܺǤ ܴଷǢ     ܼଶ ՚ ܺଶଶǤ ܴସǢ  ܴଶ ՚ ܺଶସ ;  

St2:  ଵܺ ՚ ሺݔǤ ሺ ଵܺ  ܼଵሻଶ         ଵܺ ՚ ଵܺǤ ܼଵሻ;          ܺଶ ՚ ܾǤ ܴହ  ܴଶ;          ܴଵ ՚ ሺ ଵܺ  ܼଵሻଶ         ܴଷ ՚ ܼଶ   ܴହ ՚ ሺሺܺଵ  ܼଵሻଶሻଶ ;{ ܴହ ൌ  ܼଵଶሽ  
If ݇ ൌ Ͳ, ݇ ାଵ ൌ ͳ and ݇ିଵ ൌ Ͳ  then {Transition : ݇  ൌ ͳ to ݇  ൌ Ͳ} 

St1:  ܺଶ ՚ ܺଶǤ  ܴଵǢ ሼ ܴଵ ൌ ܼଵሽ  ܼଶ ՚ ଵܺǤ ܴଷǢ       ܼଵ ՚ ଵܺଶǤ ܴହǢ ܴଶ ՚ ଵܺସ Ǣ                                                                                        ܴସ ՚  ܴହଶ ; {  ܴସ ൌ  ܼଵସሽ 
St2:  ܺଶ ՚ ሺݔǤ ሺ ܺଶ  ܼଶሻଶ         ܺଶ ՚ ܺଶǤ ܼଶሻ;          ଵܺ ՚ ܾǤ ܴସ  ܴଶ; 
          ܴଵ ՚ ሺ ܺଶ  ܼଶሻଶ                    ܴଷ ՚ ܼଵ          ܴହ ՚  ܼଵସ ; ܴସ ՚  ܼଵଶ ; 
If ݇ ൌ Ͳ, ݇ ାଵ ൌ Ͳ and ݇ିଵ ൌ Ͳ  then{ No  transition} 

St1:  ܼଶ ՚ ଵܺǤ  ܴଵǢ ሼ ܴଵ ൌ ܼଶሽ   ܺଶ ՚ ܺଶǤ ܴଷǢ       ܼଵ ՚ ଵܺଶǤ ܴସǢ ܴଶ ՚ ଵܺସ Ǣ  
St2:  ܺଶ ՚ ሺݔǤ ሺ ܺଶ  ܼଶሻଶ         ܺଶ ՚ ܺଶǤ ܼଶሻ;          ଵܺ ՚ ܾǤ ܴହ  ܴଶ; 
          ܴଵ ՚ ሺ ܺଶ  ܼଶሻଶ                    ܴଷ ՚ ܼଵ          ܴହ ՚  ܼଵସ ; ܴସ ՚  ܼଵଶ ; 
Conversion Step: As shown in the Algorithm 1. 

 

 
Fig. 7. Data flow of  LLECC for ݇ାଵ ൌ ͳ  , ݇  ൌ ͳ and ݇ ିଵ ൌ ͳ 

 



Thus, the loop of the point operations can be accomplished 
utilizing only two clock cycles for any set of values of ݇ାଵ, ݇ 
and ݇ିଵ. 

B. Multiplier with Segmented Pipelining for LLECC 

Parallel multipliers are used to reduce latency for point  
multiplication in ECC processor implementations and the 
majority of reported designs in the literature are based on digit 
serial multipliers instead of bit parallel multipliers [13 -17]. Bit 
parallel multipliers take larger area and critical path delay as the 
size of the multiplier is large due to the large field sizes of the 
ECC curves [18]. The subquadratic bit parallel multiplier can 
be suitable for a high speed ECC design, however, pipelining is 
required to improve speed [11]. The adoption of the pipelining 
in the proposed 3 multiplier-based ECC processor is limited as 
the loop operation takes place within two clock cycles only.  
Thus, only one stage pipelining can be adopted to improve the 
performance of the multiplier providing a smart scheduling is 
devised to overcome the data dependency. The limitation of 
pipelining is a serious bottleneck for the traditional bit parallel 
and subquadratic multipliers to achieve significant 
performance. This is overcome in our proposed segmented 
pipelining technique by implementing n pipelines in parallel, 
achieving an overall single stage only pipelining as shown in 

Fig. 6.  This makes the proposed full-precision multiplier 
suitable for the very low latency loop while still maintaining a 
high performance. The high performance can allow high 
security ECC curves to be deploy in more applications.     In 
our proposed low latency ECC (LLECC) processor 
architecture (as shown in Fig. 6), we consider LLECC 
implementation over GF(2163) where we use three parallel 
multipliers where each of them is a 163 bit  full-precision 
multiplier with 14 bit segmented pipelining. 

C. Square Circuit, Memory Unit and Control Unit of LLECC 

Our proposed least latency ECC (LLECC) processor takes 2 
clock cycles for a loop operation of the Montgomery point 
multiplications. To accomplish 2 clock cycles based loop 
operation, we need to process the multiplier output in same 
clock cycle by cascading the adder and square circuits.  Thus, 
in Fig. 6, there are several extra adder, square circuits and local 
registers are considered to calculate some instructions of the 
point operation on the fly as compare to Fig .3. The main 
memory architecture adopted is the same as that of the 
distributed based memory of Fig. 3 used to enhance speed. Our 
main memory saves the initial input and the final outputs, and 
during a loop operation, the memory supplies the constant 
values (x, y, b) as most of the calculated outputs are saved in the 
local registers to reduce the delay for memory access.   

We also use a separate shift register (k register) to save the 
key of the ECC. The shift register shifts 1 bit in every two cycles 
to generate a new set of values for  ݇ାଵ, ݇ and ݇ିଵ used in the 
control unit as shown in Fig. 6. The control unit of the LLECC 
is also based on a finite state machine (FSM) that controls the 
two clock cycles based point operations and is simpler than the 
control unit of the HPECC as most of the operation are 
performed concurrently. 

D. Critical Path Delay and Clock Cycles of the LLECC 

In the proposed low latency ECC (LLECC) architecture, we 
perform several instructions in the same cycle by cascading the 
multiplier, adder and square circuits as shown in Fig. 6. The  
critical path delay of the LLECC is the path delay of MULGF2 
+ the reduction part + adder + square + 3x1 mux as shown in 
Table II. The critical path delay can be optimised by selecting 
the size of w through a trial and error approach.  

The total clock cycles of ECC mainly depends on the latency 
of the loop operation of the point multiplication. We achieve 2 
clock cycles for each loop operation for the Montgomery point 
multiplication in projective coordinates which is the theoretical 
limit of the Montgomery point multiplication algorithm under  
projective coordinates. Again, the coordinates conversion 
circuit includes the costly inversion operation. We adopt 
multiplicative inversion to reduce area and time complexities 

 
Fig.8. Data flow of LLECC for ݇ାଵ ൌ ͳ  , ݇  ൌ Ͳ and ݇ ିଵ ൌ Ͳ 
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overheads [9]. As the total latency of the point multiplication in 
projective coordinates based on the two clocked cycles loop 
operations is comparable to the latency of the final conversion 
operation, reducing the clock cycles for the conversion 
operation is required. The inversion operation involved in the 
conversion step consumes most of the clock cycles and is thus 
the focus for optimisation. We use a 4-square circuit to speed 
up the multiplicative inversion operation. The total clock 
cycles(CCs) for point multiplications of the LLECC = 5 CCs 
for initialisation + 4 CCs to start of the loop+ (m-1)x2 CCs for 
loop operations + 4 CCs to exit loop+  CCs for Coordinates  
conversion(= (m/2) for square + #mulx1) CCs for inversion +23 
others) as shown in Table III. The LLECC architecture  
consumes extra clock cycles at the start of first loop and at the 
end of the final loop operation due to load/unload of variables 
to/from the local registers. Again, the latency for inversion 
depends on the curve size and defined by ہlogଶ ݉ െ ͳۂ ݄ሺ݉ െ ͳሻ െ ͳǡ where ݄ሺ݉ െ ͳሻ is the Hamming weight.  The 
other clock cycles, 23 clock cycles that are independent of curve 
size include mainly 10 multiplications and 6 addition and 1 
square operations. For example, the total clock cycles for 
GF2163 = 5+4+162x2+4+113(= (81 + 9) +23) = 450 clock 
cycles. 

VI.  IMPLEMENTATION RESULTS 

The architectures have been implemented (placed and 
routed) on Xilinx Virtex4, Virtex5 and Virtex7 FPGA 
technologies to enable fair comparisons to relevant reported 
designs on the same technologies as well as provide 
achievable implementation results on more recent 
technologies. Where feasible the designs have been 
implemented in each Virtex family.  The FPGA size selected 
was the smallest in the family that could accommodate the 
design in terms of area and pin count. 

The results of our proposed high speed ECC processor 
implementation on Virtex4 (XC4VLX60), Virtex5 
(XC5VLX50) and Virtex7 (XC7V330T) for HPECC and again, 
Virtex5 (XC5VLX110) and Virtex7 (XC7V690T) for LLECC 
over GF(2163), and Virtex7 (XC7VX980T) for HPECC over 
GF(2571) using Xilinx ISE 14.5 tool after place and route are 
shown in TABLE IV. The presented results are achieved with 
the use of high speed timing closure techniques. We used 
repeated place and route for different timing constraints to 
achieve the best possible result.The high performance ECC 
implementations over GF(2163)  based on one multiplier 
(HPECC_1M) on Virtex4, Virtex5 and Virtex7 consume 12964 
slices, 4393 slices and 4150 slices and can operate at maximum 

TABLE IV  
COMPARISON OF PROPOSED ECC WITH PUBLISHED STATE OF THE ART OVER GF(2M) AFTER PLACE AND ROUTE ON FPGA 

Ref. Slices 
(Sls) 

FFs LUTs Freq. 
(MHz) 

kP 
Time 
(µs) 

Sls x 
Time x 
10-3 

Latency, 
Clock    
Cycles 

FPGA Resources:  
Multipliers(Mul) 

ECC over GF2163 

[10] 4080 1502 7719 197 20.56 84 4050 Virtex-4 41 bit Karatsuba Mul 

[11] 8095 - 14507 131 10.70 87 1429 Virtex-4 163 bit Karatsuba Mul 

[12] 16209 7962 26364 154 19.55 317 3010 Virtex-4 55 bit Mastrovito mul 

[14] 20807 - - 185 7.72 161 1428 Virtex-4 3 Core 82 bit Mul 

[15] 24363 - - 143 10.00 244 1446 Virtex-4 3 GNB 55 bit Mul 

[16] 17929 - 33414 250 9.60 172 2751 Virtex-4 3 Digit Serial 55 bit Mul 

[17] 12834 6683 22815 196 17.20 221 3372 Virtex-4 2 GNB 55 bit Mul 

[21] 8070 - 14265 147 9.70 78 1429 Virtex-4 163 bit Karatsuba Mul 

[22] 10417 - - 121 9.00 94 1091 Virtex-4 163 bit Karatsuba Mul 

[23] - - 27889 133 16.00 - 2128 Virtex-4 163 bit Karatsuba Mul 

[24] 3536 1870 6672 290 14.39 51 4168 Virtex-4 41 bit Digit Serial Mul 

HPECC_1M 12964 3077 23468 210 5.32 69 1119 Virtex-4 163 bit Mul 

[13] 6150 - 22936 250 5.48 34 1371 Virtex-5 3 Digit Serial 81 bit Mul 

[11] 3513 - 10195 147 9.50 33 1429 Virtex-5 163 bit Karatsuba Mul 

[17] 6536 4075 17305 262 12.90 84 3379 Virtex-5 2 GNB 55 bit Mul 

[21] 3446 - 10176 167 8.60 30 1429 Virtex-5 163 bit Karatsuba Mul 

[23] - - 18505 199 11.00 - 2189 Virtex-5 163 bit Karatsuba Mul 

[24] 1089 1522 3958 296 14.06 15 4168 Virtex-5 41 bit Digit Serial Mul 

[25] 10363 6529 29095 153 5.10 53 780 Virtex-5 2x163 bit Mul 

HPECC_1M 4393 3090 16090 228 4.91 22 1119 Virtex-5 163 bit Mul 
LLECC_3M 11777 3403 42192 113 3.99 47 450 Virtex-5 3x163 bit Mul 

[24] 1476 1886 4721 397 10.51 16 4168 Virtex-7 41 bit Digit Serial Mul 

[25] 8736 6529 27105 223 3.50 31 780 Virtex-7 2x163 bit Mul 

HPECC_1M 4150 3747 14202 352 3.18 13 1119 Virtex-7 163 bit Mul 
LLECC_3M 11657 7969 41090 159 2.83 33 450 Virtex-7 3x163 bit Mul 

ECC over GF2571 

[10] 34892 6445 66594 107 133.00 4641 14231 Virtex-4 143 bit Karatsuba Mul 

[24] 12965 10066 38547 250 57.61 747 14420 Virtex-7 143 bit Digit Serial Mul 

HPECC_1M 50336 29217 141078 111 34.05 1815 3783 Virtex-7 571 bit Mul 

 



clock frequencies of 210 MHz, 228 MHz and 352 MHz 
respectively. The achievement of high frequency is due to the 
design of the high performance field multiplier. Our Low 
latency ECC processor based on three parallel multipliers 
(LLECC_3M) improves speed by reducing latency with an area 
overhead. The proposed LLECC on Virtex7 can manage 159 
MHz frequency by consuming the same area of the Virtex5 (113 
MHz and 11777 Slices). 

TABLE IV provides detailed comparison to state of the art 
using the same technology. 

Our previous high throughput design presented [24] is the 
best reported implementation in terms of area-time metric; our 
HPECC implementation presented here over GF(2163) on 
Virtex7 achieves a better  metric value  (area-time metric of 13) 
even using a full precision multiplier.  Our previous high speed 
ECC implementation presented in [25] is the fastest FPGA 
design to date on Virtex7. Our proposed design in this paper 
outperforms [25] in both speed and area-time metrics.   

For Virtex4, the previous highest speed implementation is 
presented in [14] and consumed 20807 slices to achieve 7.72  
µs using three 82 bit parallel multiplier cores. Our HPECC 
implementation on Virtex4 consumes 38% less area and shows 
31% speed improvement. Again, our work uses less arithmetic 
(163 bit multiplier) resource to gain 2.33 times improvement in 
the area-time metric(Slices x Time x 10-3) as compared to the 
work in [14]. In [16], the authors presented a high speed design 
that used 17929 slices to attain 9.60 µs for the point 
multiplication time; meanwhile, our proposed work on Virtex4 
is 45% faster than that in [16] and consuming less area. The 
work presented in [15] uses three 55 bit multipliers consumed 
two times the area to achieve 10 µs whereas our design can 
show two times better speed. The most relevant work is 
presented in [11] where the authors using a 163 bit multiplier 
with four stage pipelining to achieve maximum clock frequency 
131 MHz. Our design is based on 163 bit multiplier with two 
stages pipelining achieved a clock frequency of 210 MHz that 
is 60% clock frequency speed up improvement. Again, our ECC 
processor implementation is twice as fast with only 60% more 
slices; this translates to 21% improvement in the area-time 
metric than the reported efficient design in [11]. Our design 
shows 18% better area-time metric than the previous best 
optimized design presented in [10]. The work presented in [12] 
used pipelining technique to achieve high clock frequency. Our 
proposed ECC processor uses 2 stages pipelining to get 36% 
improvement in clock frequency speed over [12]. The work in 
[21] is the previous version of [11]. The work in [22] and [23] 
are a similar implementation to [11]; however, [11] is a LUTs 
optimised implementation. In comparison with [21], [22] and 
[23], our work shows better results than the best results they 
presented.  

For Virtex5, the best reported performance result over 
GF(2163) is 5.48 µs and is presented in [13]  with 6150 slices. 
Our proposed ECC processor consumes only 4393 slices to 
compute a point multiplication in 4.91 µs is better in both speed 
(10%) and area (29%) than that in [13]. Our state of art achieves  
double the speed of [11] but consuming only 25 % more slices. 
The presented work in [17] consumes 6536 slices to get a speed 
of 12.9 µs; our area-time metric is 3.81 times better than that in 
[17]. 

The proposed HPECC architecture over GF(2571) (the 

highest security NIST curve) is the first reported full precision 
multiplier based implementation and  sets a new time record for 
point multiplication (37.5 µs on Virtex7). 

Our low latency ECC (LLECC) requiring only two clock 
cycles for Montgomery point multiplication is the first 
implementation in the literature with such schedule. The 
proposed LLECC design has the lowest latency figure (450 
clock cycles for the curve over GF(2163)) reported to date while 
still achieving  a high  clock frequency thanks to the  novel 
pipelining technique in the field multiplier and the smart 
breaking of the long critical path delay by inserting local 
registers. Furthermore, the LLECC over GF(2163) implemented 
on Virtex7 shows the fastest ever figure for point multiplication 
(2.83 µs ) on FPGA at the theoretical limit of performance. 

VII.  CONCLUSIONS 

This paper presented a very high speed elliptic curve 
cryptography processor for point multiplication on FPGA based 
on a novel 2 stages pipelined full-precision multiplier in 
HPECC,  and a 1 stage pipelined full-precision multiplier in 
LLECC with careful scheduling in both cases for the combined 
Montgomery point multiplication algorithm.  

Our proposed high performance one multiplier based 
architecture takes six cycles for a loop of the Montgomery point 
multiplication in the projective coordinates without any 
pipelining delay whereas our low latency ECC (3-multiplier 
based) processor takes only two clock cycles. The architectures 
have been implemented (placed and routed) on Xilinx Virtex4, 
Virtex5 and Virtex7 FPGA families resulting in the fastest 
reported implementations to date to the best knowledge of the 
authors.  On the Virtex4 our ECC point multiplication over 
GF(2163) takes 5.32 µs with 13418 slices - is faster than the 
fastest previously reported Virtex 4 design [14] and also faster 
than the fastest reported design to date (5.48 µs) which was on 
a Virtex 5 [13].  On Virtex5, our design over GF(2163) is not 
only even faster at 4.91 µs but also smaller than that of [13]. 
Our implementation on the new Virtex7 FPGA technology 
achieves the best area-time performance with the highest speed 
to date; an ECC implementation takes only 3.18 µs using 4150 
slices. To evaluate scalability of our contributions, we also 
implemented the proposed one multiplier based architecture 
over GF(2571), the highest security curve in the NIST standard 
[5],  on Virtex 7; this is the first reported implementation, which 
can complete a point multiplication by taking only 37.54 µs. 
Our parallel multipliers based ECC design is the first reported 
full-precision parallel architecture which shows the highest 
speed (2.83 µs) for the point multiplication over GF(2163) with 
the lowest latency (450 clock cycles) on FPGA. 

The proposed ECC processor implementations would enable 
faster deployment of public-key cryptography protocols for 
example in terms of key agreement (ECDH) and digital 
signatures (ECDSA) across a range of platforms with improved 
efficiency in terms of area/power resource. 
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