
This is a repository copy of High Speed and Low Latency ECC Implementation over
GF(2m) on FPGA.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/99476/

Version: Accepted Version

Article:

Khan, Z.U.A. and Benaissa, M. (2017) High Speed and Low Latency ECC Implementation
over GF(2m) on FPGA. IEEE Transactions on Very Large Scale Integration Systems, 25
(1). pp. 165-176. ISSN 1557-9999

https://doi.org/10.1109/TVLSI.2016.2574620

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Abstract—In this paper, a novel high speed ECC processor

implementation for point multiplication on Field Programmable
Gate Array (FPGA) is proposed. A new segmented pipelined full-
precision multiplier is used to reduce the latency and the Lopez-
Dahab (LD) Montgomery point multiplication algorithm is
modified for careful scheduling to avoid data dependency
resulting in a drastic reduction in the number of clock cycles
required. The proposed ECC architecture has been implemented
on Xilinx FPGAs Virtex4, Virtex5 and Virtex7 families. To our
knowledge, our single multiplier and three multipliers based
designs show the fastest performance to date when compared to
reported works individually. Our one multiplier based ECC
processor also achieves the highest reported speed together with
the best reported area-time performance on Virtex4 (5.32 µs at 210
MHz), on Virtex5 (4.91 µs at 228 MHz), and on the more advanced
Virtex7, (3.18 µs at 352 MHz). Finally, the proposed three
multiplier based ECC implementation is the first work reporting
the lowest number of clock cycles and the fastest ECC processor
design on FPGA (450 clock cycles to get 2.83 µs on Virtex7).

Index Terms— High Speed ECC, Point Multiplication, Low
Latency, Pipelined Bit Parallel Multiplier, Field Programmable
Gate Array

I. INTRODUCTION

LL IPTIC curve cryptography (ECC) was proposed by
Koblitz [1] and Miller [2] in 1985 individually. Public key

cryptography based on ECC provides higher security per bit
than its RSA counterpart [3]. ECC has some additional
advantages such as a more compact structure, a lower
bandwidth, and faster computation that all make ECC usable in
both high speed and low resource applications. The National
Institute of Standards and Technology (NIST), US has proposed
a number of standard Elliptic curves over binary fields ܨܩ(2m)
[5]. Binary field curves are suitable for hardware
implementation as field arithmetic operations are carry free.
FPGA based ECC hardware design is increasingly popular
because of its flexibility, shorter development time scale, easy
debugging and continual improvement of the technology (lower
power and higher performance FPGAs).

 Many high performance ECC processor implementations
on FPGA have been reported in the literature; the most relevant
are presented in [10], [11], [12], [13], [14], [15], [16], [17], [20],
[21], [22], and [23]. The common optimizing technique of high
speed designs is the reduction of latency (number of clock

Z. U. A. Khan and M. Benaissa are with the Electronic and Electrical
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

(e-mail: elp10zuk@sheffield.ac.uk; m.benaissa@sheffield.ac.uk).

cycles) of a point multiplication (PM). To achieve low latency
for a PM, these works adopted either parallel multipliers or
large size multipliers at the expense of additional area
complexity; pipelining stages are also often used to increase
clock frequency at the expense of few extra clock cycles and
area overheads [10, 12]. In addition, the pipelining stages in the
multipliers create idle cycles at the PM level if there is data
dependency in the instructions. As a result, careful scheduling
is required to take full advantage of pipelining. Indeed, recently
we have reported the highest throughput and highest speed
ECC designs on FPGA in [24, 25] by using novel digit-serial
and bit parallel multipliers together with efficient scheduling
and pipelining techniques.

In this paper we extend our work in [24, 25] to yield two
important contributions to the state of the art. First is the fastest
and also crucially with the best area-time metric ECC design on
FPGA to date to the best of our knowledge. And secondly, we
report an even faster ECC processor design with the lowest ever
latency (clock cycles) that achieves the performance of the
theoretical limit. These are achieved via a novel pipelining
technique that enables high clock frequencies to be attained and
via a thorough investigation of the different combinations of the
field multipliers to evaluate the performance limits for high
speed applications. Below are listed the key contributions to the
results:
 A full precision ܨܩ(2m) multiplier with segmented

pipelining to reduce both latency and area.
 A one multiplier-based architecture for the ECC processor

design targeted at high performance but with low area
(fastest ECC processor with best area and time
complexities).

 A three multipliers-based architecture for the ECC
processor design aimed at the highest possible speed.

 A modified Montgomery point multiplication algorithm to
avoid extra latency due to our two-stage pipelining in the
field multiplier and use of careful point multiplication
scheduling to reduce latency.

 A pipelined Moore finite state machine (FSM) based
control unit is designed to avoid data dependency in the
arithmetic operations by introducing an extra cycle
delay.

 Data is tapped from different pipeline stages to localize
some arithmetic operations and avoid memory input-output

Zia U. A. Khan, Student Member, IEEE, and Mohammed Benaissa, Senior, Member, IEEE

High Speed and Low Latency ECC Processor
Implementation over GF(2m) on FPGA

E

mailto:elp10zuk@sheffield.ac.uk

operations.
 A repeated square over square circuit (capable to perform

a 4-square or quad square operation in a single clock cycle)
to reduce latency for the multiplicative inversion operation
based on Itoh-Tsujii algorithm [9].

 Finally, we use Xilinx ISE timing closure techniques to
achieve the best possible high performance results

The rest of this paper is organized as follows: Section II
presents the background of ECC and associated arithmetic
operations over GF(2m); full-precision multiplication is also
discussed in this section. Our proposed full-precision GF(2m)
multiplier is presented in Section III . Sections IV , and V cover
the proposed ECC processor architectures. In Section VI,. the
implementation results are presented, and compared to the state
of the art. Finally, this paper is concluded in Section VII.

II. ECC BACKGROUND AND ITS ARITHMETIC OVER GF(2M)

A. Scalar Point Multiplication

The main operation in ECC is scalar point multiplication, ܳ ൌ ݇ܲǡ, where ݇ is a private key (integer), ܳ is a public key
and ܲ is a base point on an elliptic curve, ܧ. The public key, ܳ
is computed by k times point addition operation: ܳ ൌ ݇ܲ ൌ ܲ ڮ ܲ ܲ (1)

If the public, ܳ and ܲ are known then the private ݇ is difficult
to retrieve. An elliptic curve over ܨܩ(2m), ܧ can be defined as: ݕଶ ݕݔ ൌ ଷݔ ଶݔܽ ܾ (2)
Where ܽǡ ܾ א ܾ ,(2m)ܨܩ ് Ͳ and a point at infinity is ߠ such
that ଵܲ ߠ ൌ ଵܲ where ଵܲ ൌ ሺݔଵǡ ଵǡݔଵሻ and ሺݕ ଵሻݕ א ሺʹሻǤܨܩ

The point multiplication ݇ ܲ is achieved by using scalar point
multiplication algorithms utilizing point addition and point
doubling depending on the ith value of ݇ǡ ݇ [4].

Scalar point multiplication can be affine coordinates based
or projective coordinates based. Because of the expensive
inversion operation involved in affine coordinates based
algorithms, projective coordinates based point multiplication is
a more common choice for ECC hardware implementation. In
this paper, the Lopez–Dahab Montgomery (LD) point
multiplication is considered. This algorithm, requires 6 field
multiplications, 5 field squaring operations and 4 addition
operations as shown in algorithm 1 [6]. The LD algorithm is
generally faster to implement, and leads to improved

parallelism and resistance to side channel power attack

B. Field Arithmetic over GF(2m)

Field multiplication, field squaring, field addition and field
inversion operations are involved in a point operation. Addition
and subtraction are equivalent over GF(2m), which are very
simple bitwise xor operations.

Field inversion is very costly in term of hardware and delay.
In projective coordinates, an inversion operation is used for the
projective to affine coordinates conversion that can be achieved
with multiplicative inversion. The Itoh-Tsujii [9] algorithm is
selected as it requires only logଶሺ ݉ሻ multiplications and (m-1)
repeated squaring operations. In projective coordinates based
implementations, overall performance depends on the
performance of the field multipliers.

C. Full-precision Multiplier for ECC Application

For high speed ECC application, the field multiplier is the
main part of the arithmetic unit compared to the field squaring
and field addition circuits due to the high area and time
complexities of the multiplier. The performance of the
multiplier affects the overall performance. The performance of
the multiplier depends mainly on the size of the multiplier. A
larger size multiplier reduces latency to speed up the point
operation; however, the critical path delay is increased. Thus,
pipelining is often adopted to shorten the critical path delay.
Moreover, some multiplication algorithms (such as Karatsuba)
are used to improve area and time complexity [10, 11, 23]. For
the high-speed end of the design space, large digit serial
multipliers or bit parallel multipliers (such as school book and
Mastrovito) are often used. The bit parallel multiplier takes one
clock cycle latency, which can be an attractive option to speed
up the point multiplication.

The field multiplication for ECC over GF(2m)is divided into
two parts: the GF2 multiplication part (GF2MUL) and the
reduction part. For a large size multiplier, the GF2MUL part is
costly compared to the reduction part [18]. Thus, the main
optimization of the large multiplier is concentrated on the
GF2MUL part. There are several high performance bit parallel
multipliers in the literature [11], [19], [20], [26], and [27]. The
complexity of a bit parallel multiplier can be quadratic or
subquadratic [18]. A quadratic multiplier achieves higher speed
by consuming higher area than that of a subquadratic multiplier.
Subquadratic multipliers are mostly based on the Karatsuba
algorithm to reduce the area complexity at the expense of a
lower clock frequency. The performance of the Karatsuba based
bit parallel multiplier is improved by adopting pipelining
techniques [11]. In the next section, we present a novel high
performance full-precision GF(2m) multiplier with segmented
pipelining.

III. PROPOSED GF2M MULTIPLIER WITH SEGMENTED

PIPELINING

The proposed full-precision GF(2m) field multiplier
(including reduction) with segmented pipelining is shown in
Fig. 1 and consists of two stages pipelining to improve clock
frequency.The first stage pipelining is the proposed segmented
pipelining to break the critical path delay of the GF2MUL part,
which is similar to the presented work in [7]. In the segmented
pipelining, we divide the m bit multiplier operand into n number

Algorithm 1: LD Montgomery Point Multiplication over GF(2m) [6]

INPUT: ݇ ൌ ሺ݇௧ିଵǡ ǥ ǡ ݇ଵǡ ݇ሻଶ with ݇ ௧ିଵ ൌ ͳǡ ܲ ൌ ሺݔǡ ሻݕ ג ଶሻܨሺܧ
OUTPUT: ݇

Initial Step: ܲሺ ଵܺǡ ܼଵሻ ՚ ሺݔǡ ͳሻǡ ʹܲ ൌ ܳሺܺଶǡ ܼଶሻ ՚ ሺݔସ ܾǡ ଶሻݔ
For ݅ from ݐ െ ʹ downto 0 do
If ݇ ൌ ͳ then
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌܲ൫ ଵܺǡܼଵ൯ ܳ൫ܺଶǡܼଶ൯

Point Doubling: ܳ ሺܺଶǡ ܼଶሻ ൌʹܳሺܺଶǡ ܼଶሻ
1. ܼଵ ՚ ܺଶǤ ܼଵ
2. ଵܺ ՚ ଵܺǤ ܼଶ
3. ܶ ՚ ଵܺ ܼଵ
4. ଵܺ ՚ ଵܺǤ ܼଵ
5. ܼଵ ՚ ܶଶ
6. ܶ ՚ Ǥݔ ܼଵ
7. ଵܺ ՚ ଵܺ ܶ
8. Return ܲሺ ଵܺǡ ܼଵሻ

1. ܼଶ ՚ ܼଶଶ
2. ܶ ՚ ܼଶଶ
3. ܶ ՚ ܾǤ ܶ
4. ܺଶ ՚ ܺଶଶ
5. ܼଶ ՚ ܺଶǤ ܼଶ
6. ܺଶ ՚ ܺଶଶ
7. ܺଶ ՚ ܺଶ ܶ

Return ܳሺܺଶǡ ܼଶሻ
Conversion Step: ݔଷ ՚ ଵܺȀܼଵ Ǣ ଷݕ ՚ ሺሺݔ ଵܺሻ ܼଵΤ ሻሾሺ ଵܺ ଵሻሺܺଶܼݔ ܼݔଶሻ ሺݔଶ ሻሺܼଵܼଶሻሿ(xܼଵܼଶሻିଵݕ Ǥݕ

of w bit long digit multiplier operands. Then, we multiply the m
bit multiplicand by each of the w bit multipliers. The results of
the w digit size multiplier is m+w-1 bit long. We save each of
the results in the m+w-1 size pipelining register. Here, we save
n multiplications results in the n number of m+w-1 size
registers. The outputs of the m+w-1 sizes registers are aligned
by shifting (logically) w bits from each other followed by xor
operations (addition). The result of the addition is 2m-1 bit long
is then reduced to m bit in the reduction unit. In the reduction
unit, we reduce 2m-1 bit to m bit multiplier output using a fast
irreducible reduction polynomial [4][5]. The output of the
reduction unit is applied to the second stage pipelining register.
Thus, there are two pipelining stages and hence, the proposed
multiplier consumes only 2 clock cycles as an initial delay to
perform multiplication. The pipelining of the multiplier divides
the total critical path delay into two parts: the critical path delay
of GF2MUL, ܶ ሺ݈݃ଶሺ ݉ ݊Τ ሻሻ ܶ and the critical path delay of
the reduction part using the fast NIST reduction polynomial (r-
nomial), ሺlogଶሺሺ ݊ ሻሻ ܶ as shown in Table 1[4,7]. Bothݎʹ
critical path delays depend on the size of the segment, w. Thus,

any one of the two critical paths can be the critical path of the
multiplier. The optimum critical path can be defined by the
optimum size of w which can be determined by a trial and error
method.

A one stage pipelining (segmented pipelining) achieves 1
clock cycle delay. The critical path delay of the multiplier is the
combination of the MULGF2 and the reduction part, which
is ܶ ሺlogଶሺ ݉ ݊Τ ݊ ሻሻ ܶ. Again, the critical pathݎʹ
delay can be modulated by changing the size of the segment of
the multiplier. The optimum size of the segment of the
multiplier can be also achieved by using a trial and error
method. In Table 1, we present space and time complexities of
our proposed multipliers and we compare these with quadratic
and subquadratic bit parallel multipliers reported in [19], [20],
[26], and [27]. In the theoretical analysis of the quadratic and
subquadratic multipliers, the quadratic bit parallel multiplier
has twice as high speed as the speed of the subquadratic, but,
the quadratic multiplier consumes 2.56 times more area [19].
Moreover, the authors in [19] compare the implementation
results of the two bit parallel multipliers where they show the
ratio (Quadratic/Subquadratic) is 1.5 in terms of area and 0.625
in terms of delay. Their implementation results show that the
quadratic bit parallel multiplier can achieve higher speed, and
the area-time product of the subquadratic multiplier
outperforms the quadratic multiplier by only 6.65 %. Therefore,
a quadratic multiplier is considered a better option for high
speed ECC implementation when area is not a constraint; for
example, the quadratic multiplier in [26] and its improved speed
version in [27] both based on a matrix-vector method
(Mastrovito) can achieve improved speed on a subquadratic
multiplier [19] but with larger area.

An analytical complexity analysis for the multipliers is
shown in Table 1. Our proposed multiplier consumes similar
area to the multipliers in [19], [20], [26] and [27] (m2>>(ሺ݊ െͳሻ݉ ሺݎ െ ͳሻ݉). But, its regular structure makes it more
suitable for pipelining, hence offers more scope for higher
speed performance. Our proposed multiplier has a very short
critical path compared to the reported parallel multipliers;
hence, can show better area-time performance due to its high
speed advantage. For the area complexity, our proposed
multiplier consumes the same resources of XOR and AND gates
as that of the quadratic bit parallel multiplier and uses flip flops
(FFs) to reduce the critical path delay. For illustration, an

Fig. 1. Proposed Segmented Full-precision Multiplier over GF(2m).

TABLE I
LATENCY, CRITICAL PATH DELAYሺ ܶ௨) AND RESOURCES OF PROPOSED FULL-PRECISION MULTIPLIER OVER ܨܩሺʹሻ

Ref Type CCs #XOR #AND #FFs Critical path delay(Tmul)
[19] Quadratic 1 ݉ଶ െ ͳ ݉ଶ - ܶ ሺͳ logଶሺ ݉ሻሻ ܶ
[19] Subquadratic 1 ͷǤͷ݉୪୭మሺଷሻ െ ͵݉ ͲǤͷ ݉୪୭మሺଷሻ - ܶ ሺʹ logଶሺ ݉ሻ ͵ሻ ܶ
[20] Pipelined-Quadratic 1 ݉ଶ ͵݉ ݉ଶ 40m ܶ ሺሺ݉ ሻΤ logଶሺ ݉ሻሻ ܶ
[26] Mastrovito 1 m(m-1)+3(m-1) ݉ଶ - ܶ ሺ݈݃ଶሺ Ͷ݉ ͳʹݑ െ ʹͳሻ ܶ
[27] Mastrovito with SPB 1 ݉ଶ ͵݉ െ ݉ଶ - ܶ ሺͳ ଶሺ݈݃ ʹ݉ ݑ െ ͳሻ ܶ

OUR MUL.
Fig. 2

Full-precision
 (Segmented pipelined)

1 ݉ሺ݉ െ ͳሻ ሺ݊ െ ͳሻ݉ ሺݎ െ ͳሻ݉
݉ଶ n(m+w-1)+m ܶ ሺlogଶሺ ݉Τ݊ ሻሻ ܶ

or ሺlogଶሺሺ ݊ ሻሻ ܶݎʹ
OUR MUL.

Fig. 3
Full-precision
 (Segmented pipelined)

1 ݉ሺ݉ െ ͳሻ ሺ݊ െ ͳሻ݉ ሺݎ െ ͳሻ݉
݉ଶ n(m+w-1) ܶ ሺlogଶሺ ݉Τ݊ ݊ ൌ ݓ ሻሻ ܶݎʹ segment sizeǡ ݊ǡ ͓Segments = ݉ Τݓ , ݂ ሺݔሻ ൌ ݔ ݔ ݔ ݔ ͳ ݎ ݂ሺݔሻ ൌ ݔ ݔ ͳ ݎ ݂ሺݔሻ ൌ ݔ ሺ௨ାଵሻݔ ௨ݔ ݔ ͳ . ܶ and ܶ are

AND and XOR gates delays respectively, p = # pipelining stages, CCs= Clock Cycles, SPB= shifted polynomial basis, r= 5 (for penta) or 3 (for tri) nomial.

approximate1 area-time complexity analysis is quantified over
GF(2163) for the various multipliers and sketched in Fig. 2. The
results show that the proposed multiplier outperforms the
reported multipliers in [19], [20], [26] and [27] in terms of area-
time performance.

IV. PROPOSED HIGH PERFORMANCE ECC (HPECC) FOR

POINT MULTIPLICATION

In this section, we present careful scheduling in the point
addition and point doubling operations, a novel pipelined full-
precision multiplier and other supporting units to achieve high
speed, low latency while optimizing area complexity.

A. Point Multiplication without Pipelining Delay

In general, the Montgomery point addition and point
doubling in the projective coordinates requires a total of six
field multiplication, five field squaring and four field addition
operations equivalent latency if implemented serially according
to Algorithm 1 [6]. If the field squaring and field addition
operations can be operated concurrently with multiplication
then the point operations latency will be equivalent to the
latency of the six field multiplications. The six multiplications
can, for example, be computed in two steps using three
multipliers or in three steps using two multipliers or in six steps
by serial multiplications using one multiplier [17], [13] and
[10]. Again, the digit size can affect the performance of ECC;
for example, a bit serial implementation takes m cycles, a digit

1 Based on Xors only as this is also done by references [26,27]; ANDs

complexity is the same for all.

 cycles and a bit parallel (ݓ / ݉) serial one takes (bits ݓ)
implementation takes a single clock cycle [8], [12] and [11]. In
the case of high speed design, digit serial multipliers are
considered to reduce latency. The disadvantage of large digit
serial multipliers is lower clock frequency. Thus, pipelining
stages are applied to improve clock frequency [12]. The clock
frequency can be improved with the increase of the number of
pipelining stages in breaking the critical path delay. The main
disadvantages of increasing the number of pipelining stages in
the high-speed end of the design space are the increase in the
number of clock cycles per multiplication and overcoming data
dependency [12]. To avoid pipelining delay, optimal scheduling
of the field operations of the point multiplication is necessary

Our first proposed ECC processor architecture is shown in
Fig. 3. It comprises a full-precision m bit multiplier with two
stages pipelining, one squaring circuit, one quad squaring
circuit and two addition circuits in order to accomplish point
operations (point addition and point doubling) within six clock
cycles. To achieve six clock cycles based point operations, we
include some strategies in the point operations of the
Montgomery point multiplication algorithm as shown in
Algorithm 2 [24]. In the proposed algorithm, we combine point
addition and point doubling to avoid data dependency. In the
point multiplication, a particular loop is overlapped with its
next loop by 2 clock cycles due to two stages pipelining. Thus,
state1 (st1) and state2 (st2) depend on the previous key bit, ݇ାଵ.
For example, if previous bit, ݇ାଵ ൌ ͳ then the last output will
be ଵܺ otherwise ܺଶ. The last output of a loop decides the
sequence of st1 and st2 in the next loop. The rest of the states
depend on the current bit of ݇ǡ ݇. To support a six clock cycle
based algorithm, we apply a squarer or double square (Quad
Square) or both operations in parallel along with the
multiplication. Again, one of the field adders is placed in the
common data path to add on the fly. The second adder is used
to add the two outputs of the multiplier as shown in Fig. 3. Both
adder circuits can add two of their inputs or can transfer either
of the inputs, if we need either. Moreover, we can save some

Fig. 2. Comparative Area and Delay Performance of Bit-Parallel GF(2m)
Multiplication (m=163, n=12, r=5 and u=3)

Algorithm 2: Proposed Combined LD Montgomery Point
Multiplication (for 6 clock cycles)
For ݅ from ݐ െ ʹ down to 0 do
If ݇ ൌ ͳ then
If ݇ାଵ ൌ ͳ then If ݇ାଵ ൌ Ͳ then
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌ ܲ൫ ଵܺǡܼଵ൯ ܳ൫ܺଶǡܼଶ൯ and Point Doubling: ܳሺܺଶǡ ܼଶሻ ൌ ʹܳሺܺଶǡ ܼଶሻ
St1: ܼ ଵ ՚ ܺଶǤ ܼଵ; ܣ ՚ ܼଶ
St2: ܺ ଵ ՚ ଵܺǤ ܼଶ, ܼଶ ՚ ଶ ; ܴଶܣ ՚ ܣ ; ସܣ ՚ ܺଶ

St1: ܼ ଶ ՚ ଵܺǤ ܼଶ; ܣ ՚ ܼଶ
St2: ܺ ଶ ՚ ܺଶǤ ܼଵ; ܼଶ ՚ ଶ; ܴଶܣ ՚ ܣ ; ସܣ ՚ ܺଶ

St3: ܺଶ ՚ ܾǤ ܴଶ ସ ; ܴଵܣ ՚ ଶܣ
St4: ܼଶ ՚ ܴଵǤ ܼଶ, ܣ ՚ ଵܺ ܼଵ
St5: ଵܺ ՚ ଵܺǤ ܼଵ, ܼଵ ՚ ଶܣ
St6: ଵܺ ՚ Ǥݔ ܼଵ ଵܺ.
Conversion Step: Same as Algorithm 1.

Fig. 3. Proposed High Performance ECC Processor Architecture

intermediate results of field operations in the local registers (R1,
R2, M and accumulator, A.) to avoid loading/unloading to the
main memory. As a result, we can avoid idle clock cycles due
to the memory input-output operations. A data flow diagram is
shown in Fig. 4 to demonstrate the proposed combined point
operations. In this diagram, we explain point operations for ݇ାଵ ൌ ͳ , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ where ݇ is the current bit, ݇ାଵ is the previous bit and ݇ିଵ is the next bit of key (݇). In
this data flow diagram, we show the loop operation of the point
multiplication in projective coordinates. In our implementation,
a multiplication takes three clock cycles due to two stages
pipelining and a square operation takes two clock cycles where
one clock cycle is used to load in the accumulator (A) register.
The addition operation is realized in the common data path and
accomplished in the same clock cycles. As we used two stage
pipelining and there is a data dependency in between two loops,
we use careful scheduling. In this scheduling, the present loop
operation of point multiplication is overlapped with the next
loop operations.

 We see, the starting state, st1 of a particular loop
depends on the value of previous bit, ݇ାଵ. If the
previous bit, ݇ ାଵ ൌ ͳ means ܺଵ is not ready. Then, we
start from st1 with the multiplication between ܺଶ and ܼଵ instead of ܺ ଵ and ܼ ଶ . In this case, The st2 is the
multiplication between ܺଵ and ܼ ଶ.

 The ܺ ଵ operand of the st2 is calculated by addition
of two outputs(Mula_out and Mulb_out in Fig. 1) of
the multipliers where one output(from Mula_out) is
tapped after the reduction unit (dotted arrow) and the
other one from the multiplier output(Mulb_out). The
other operand of st2 is ܼଶ which is already saved in
the memory in st1 to use in st2. Here, the delay of the
memory operation (accessing ܼଶ) is utilized to
calculate ܺ ଵ; again, as ݇ ൌ ͳ, we need the square and

quad square of ܼଶ. Thus, we save ܼଶ in the memory
and accumulator simultaneously in st1 to achieve the
squaring operations of ܼଶ in the st2. The output of the
square circuit (ܣଶ ൌ ܼଶଶ) is saved in the memory and
the output of quad square (ܣସ ൌ ܼଶସ) is saved in the
local register, ܴ ଶ (dotted box). We can use data from
the local register (dotted box) immediately without
doing any memory operations to save clock cycles.

 Similarly, during st2, st3 and st4, the squaring
operations of ܺଶ is realized by saving in the
accumulator through B-bus; in this case, the square
output, ܣଶ ൌ ܺଶଶ is saved in the local register, ܴଵ
whereas the quad square output, ܣସ ൌ ܺଶସ is saved in
the memory. In st3 and st4, one of the multiplication
operands is used from the memory and the other
operand from the local registers.

 In st4, ܼ ଵ (result of ܺ ଶǤ ܼଵ) is ready to save in the
memory to use in st5. Again in st4, the available
output, ܼ ଵ is required to add with the multiplication
result of ܺ ଵ on the fly. At this time, we access (tapping) ଵܺ from the output of the reduction unit (dotted arrow,
one cycle earlier than the normal output) to add with ܼଵ followed by saving in the accumulator to do the
square operation to get a new ܼଵ.

 The new ܼ ଵ is ready in st5 to save in the memory and
is required in the st6 and the next loop. In st5, the old ܼଵ (saved in st4) is used for multiplication with ଵܺ
where ܺ ଵ is directly collected from the multiplier
output followed by saving in the local register, ܯ. We
can manage ܺଵ to use immediately for multiplication
by using the instruction delay (pipelined Moore
machine based control unit) of accessing the old ܼଵ
from memory.

 In st6, we add ܺଶ (from memory) on the fly with the
multiplier output to get new ܺଶ followed by saving in
the memory. Again, the multiplication in st6 is in
between the base point, ݔ and new ܼ ଵ is completed
after two clock cycles. But, a new loop is started after
st6.

Thus, the st1 of the new loop depends on the last coordinate
of the previous loop, ܺଵ (in this case of ݇ାଵ ൌ ͳ , ݇ ൌ ͳ and ݇ିଵ ൌ ͳ) which is calculated by adding the results of the
multiplications started in st5 and st6.

 In Fig. 5, we demonstrate the loop of point multiplication
for ݇ାଵ ൌ Ͳ , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ. The previous bit of ݇, is ݇ାଵ ൌ Ͳ means coordinate ܺଶ of the last loop is not ready to
start with.

 In this case, the first state (st1) is started with
multiplication between ܺଵ and ܼ ଶ. In this state, the
multiplier output (ܼ ଵ) started from st4 of the previous
loop is saved in the memory to using in the next state
(st2). In the same state, we need to start the squaring
operation on ܼ ଶ. Thus ܼ ଶ is accessed from memory
through the A_bus for multiplication and through the
B_bus into the accumulator for squaring.

 In st2, the multiplication is ܺଶ. ܼଵ; where ܺଶ is

Fig. 4. Data flow of HPECC for ݇ାଵ ൌ ͳ , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ

calculated by adding two outputs of the multiplier and
then is saved in the ܯ register for use in the next
cycles to multiply with ܼ ଵ. In the same time, the
calculated ܺଶ is required and saved in the
accumulator for squaring as ݇ ൌ ͳ.

 The rest of the states of Fig. 5 are similar to Fig. 4.

B. Multiplier with Segmented Pipelining for HPECC

We consider the two extreme field sizes in the NIST standard
[5] i.e GF2163 and GF2571 to evaluate the ECC performance. In
the implementation over GF2163, we select ݓ ൌ ͳͶ bit to get 12
of the 14 digit serial multiplication results. The results then are
loaded in the twelve 177 bit long registers. Thus the critical path
of MULGF2 depends on one two input AND gate and 13 layers
of two input XOR gates to achieve a 14x163 multiplication.
Again, the 12 pipelining register outputs are shifted and xored
(for accumulation) to get the full-precision multiplication result
(2m-1) without reduction. The result is then reduced into 163
bit in the reduction unit using the fast irreducible reduction
polynomial [5]. The reduced result is saved in the second stage
pipelining register. Thus, the architecture works like 12 (14-bit)
digit serial multipliers are operating in parallel followed by a
full precision reduction operation. The reduction unit consists
two parts: the accumulation part and the reduction part. The
accumulation part has 11 layers of 2 inputs XORs and the
reduction part has 2r (r-nomial irreducible polynomial) layers
of 2 input XORs. Thus, the critical path delay is balanced
theoretically. Again, in the ECC processor implementation over
GF2571, we also consider the segment size of 14 bit.

C. Square Circuit, Memory Unit and Control Unit of HPECC

Our proposed high speed ECC processor design operates by
using six clock cycles for each loop of the point multiplication.
To achieve the six cycles point multiplication loop, we need a
quad square (4-square) circuit to do a one clock quad square

operation. The quad squaring is used in the st2 and st3 along
with field multiplication as shown in our proposed Algorithm
2. Again, the latency of the conversion step contributes a
significant amount to the total latency of the proposed ECC
processr as the latency of the loop operation is comparable with
that of the conversion step. In the conversion step, the inversion
operation consumes the major part of the latency in our
projective based ECC processor implementation, a
multiplicative inversion is applied for the projective to affine
coordinate conversion. Several multiplications and m steps
repeated squaring operations are required. Thus, we can utilize
the quad square circuit for speeding up the inversion by
reducing the number of the repeated square operations. In our
proposed architecture, we use a register (accumulator) in the
arithmetic data path to achieve a repeated quad square
operation without loading to the main memory. Thus, we need
1 clock cycle for a 4-square, 2 clock cycles for an 8-square and
so on.

 We design a friendly memory unit that is developed in a
single behavioral entity which comprises an accumulator and
8xm register file. The register file is based on distributed RAM
to give high performance and flexibility. There are five input-
output buses in the memory unit. Particularly, our register file
consists of three output buses (A, B, D) and one input bus. Data
through A-bus and B-bus takes one more cycle delay than data
through D-bus as shown in Fig. 3. Data from D-bus is dedicated
to the multiplier input through the M register. Hence, the two
outputs of the memory through A-bus and B-bus, and the output
of M (through D-bus) are synchronized. The M register acts as
a pipelining register between the input and the output of the
multiplier and also saves local data for the multiplier. The
memory unit offers flexibility to access any data from any
location of the memory through each of the output buses
independently. The memory unit takes one cycle for a write
operation and one cycle for a read operation. The accumulator
is designed in the same entity of the memory unit and utilizes
unused resources (flip-flops) of the memory unit. Apart from
our memory unit, we deploy local registers R1 and R2 ; R1 and
R2 are used to save outputs of square and quad square
respectively. Thus, the local registers (R1 and R2) and M save
outputs of concurrent operations to avoid the idle state that is
due to the common input bus of the memory unit, and also
avoid the data dependency in the successive point operations
loop.

 A pipelined Moore finite state machine based control unit
is developed in the single behavioral entity. The Moore
machine takes one clock cycle delay to address the memory
unit. The advantage of this initial instruction delay is a more
flexible data control that allows for some intermediate
operations to be carried out during this cycle delay with the help
of the local registers. Again, the control unit consists of very
few states to complete a point multiplication due to the full-
precision multiplier and concurrent operations. As a result, the
control unit consumes very low area while helps keeping speed
very high.

Fig. 5. Data flow of HPECC for ݇ାଵ ൌ Ͳ , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ

D. Critical Path Delay and Clock Cycles of the HPECC

Our proposed high speed ECC (HPECC) processor design
uses a segmented pipelining based full-precision multiplier to
achieve six clock cycles for each loop of the point
multiplication. The critical path delay of the ECC mainly
depend on the critical path of the multipliers. Again, the
proposed multipliers critical path delay can be the critical path
delay of the GF2MUL part or the reduction part depending on
the size of the segment. As the multiplier output (Mula_out) is
taped at end of the reduction part, and passed through the adder
and multiplexer followed by saving in the M register, the critical
path delay of the ECC can be the delay of the reduction
part+adder + mux. The critical path delay of the ECC processor
architecture is shown in Table II. The main focus of our
proposed ECC processor is the reduction in the number of clock
cycles. Particularly, our design can manage to take 6 clock
cycles for each loop of the point multiplication in the projective
coordinates. The total clock cycles for point multiplications is
the sum of three main parts: affine coordinates to projective
coordinates initialization, point multiplication in the projective
coordinates and finally projective coordinates to affine
coordinates conversion. The total number of clock cycles
(CCs) for point multiplication = 5 CCs (required for
initialization) + 6x(m-1) CCs (for point multiplication in the
projective coordinates) + CCs (for the final coordinates
conversion = m/2 CCs for square + #Mul for inversion x3 +3
CCs for Inversion + 28 CCs for others) + 3 clock cycles for
pipelining as shown in Table III. The others clocks cycles are
that are independent of curve sizes included: 10 multiplications,
6 addition and 1 square operations. For example, the total clock
cycles for point multiplication over GF2163= 5+(6x162)+139(=
(81+27+3) +28) +3=1119 cycles. Similarly, the latency of
HPECC processor over GF2571 is 3783 clock cycles.

V. PROPOSED LOW LATENCY ECC (LLECC) PROCESSOR FOR

POINT MULTIPLICATION

The speed of ECC can be improved for high speed applications
by reducing latency of the point multiplication. Parallel full-
precision multipliers can reduce latency to speed up the point
operations. We proposed a high speed ECC processor for point
multiplication utilizing three full-precision multipliers to achieve
the lowest latency high speed ECC as shown in Fig. 6.

A. Low Latency Montgomery Point Multiplication

Montgomery Point multiplication offers flexibility of parallel
field operations; there are six field multiplications in the
projective coordinates based Montgomery point multiplication,
as shown in Algorithm 1, all which can be carried out in parallel
based on data dependency. In addition, the Montgomery
algorithm exhibits the low data dependency as it employs only
x coordinates [4].

The six multiplications can be achieved in two steps by using
three full-precision multipliers as shown in Algorithm 3. To
achieve the theoretical limit of the loop operation, an ECC
processor architecture needs single clocked field multipliers
along with concurrent square and addition operations, all with
careful scheduling. In our implementation here we target and
achieve this limit which to our knowledge, no previously
reported implementation has achieved to date due to the hitherto
restrictive performance of the field multiplier. We propose a
modified Montgomery point multiplication loop based on two
steps using three full precision multipliers (Mul1, Mul2
(highlighted) and Mul3) as shown in Algorithm 3. In each state
of the proposed algorithm, three multiplications outputs are
concurrently used for additions, square and square over square
(4-square) to generate the required output for the next states as
shown in Fig 6. Mul1, Mul2 and Mul3 are the three multipliers
that multiply the three different multiplications involved in each
step of Algorithm 3 in a single clock cycle. Again, the adder and
cascaded square circuits are in the same data path of the
multiplier output to perform addition, square and 4-square
operations using the multipliers outputs.

For the initialisation of Algorithm 3, we save the required
variables to start the loop operation in local registers (ܴଵ, ܴଶ, ܴଷ, ܴସ, ܴହ, and ܴ). For a particular value of k, ݇ ൌ ͳǡ the
multipliers Mul1 , Mul2 and Mul3 as shown in Fig. 6 calculate ܺଶ ՚ ܺଶǤ ܴଵ ሼ ܴଵ ൌ ܼଵሽǡ ܼଶ ՚ ଵܺǤ ܴଷ ሼܴଷ ൌ ܼଶ ሽǡ ܼଵ ՚ଵܺଶǤ ܴହ ൛ܴହ ൌ ܼଶଶ ൟǤ In the same step, a cascaded squaring of ܺଶ is performed to obtain the 4-square operation (ܴଶ ՚ ܺଶସ)
followed by save in the R2 register. In step 2, one input of Mul1, ሺ ଵܺ ܼଵሻଶ (and the other input, x from memory unit) is
processed by adding the outputs of Mul1 and Mul2 using
adder1 followed by squaring. The output of the squaring is also
saved in the R1 register as ܼଵ for the next loop. The Mul1 output
and Mul2 are added by adder1 to get ଵܺǡ an input of step1 of
the Mul2 in the next loop. In the step2, the inputs of Mul2 are
the outputs Mul1 (ܼଵ) and Mul2 (ଵܺ). The Mul3 output (ܼଶ) of
step1 is saved in the register ܴଷ in the step2 to use as an input
of mul2 in the next loop and the Mul3 output, ܼଶ is squared
(ܼଶଶ) and 4-squared (ܼଶସ) using the cascaded square circuits
then saved in the registers R4 and R5 . Again, the inputs of Mul3
of step2 are b from the memory unit and ܼଶସ from register, R5
and the multiplication output is added with the content of R2

TABLE II
CRITICAL PATH DELAY ሺ ாܶ) OF THE PROPOSED ECC

Ref Critical path delay
HPECC ܶ௨ or ሺlogଶሺ ݊ ሻሻ ܶݎʹ ܶௗௗ ʹ ܶ௨௫
LLECC ܶ௨ ܶௗௗ ௦ܶ ͵ ܶ௨௫ ݊ ൌ ͓Segments, r is the r-nomial irreducible polynomial, ܶ௨௫= 2x1

mux delay. ௦ܶ=logଶሺ ݇ሻ, ܶ ௗௗ = ܶ ௫Ǥ

Fig. 6. Proposed Low Latency ECC Processor Architecture

(ܺଶସሻ using adder2 then inputted as ܺଶ, an input of mul1 in the
next loop. Thus, the proposed architecture supports the
calculation of all of the new inputs for the next loop such as ଵܺ, ܺଶ, ܼଵǡ andǡ ܼଶ using the two steps of algorithm 3. Apart
from this, we utilize a smart scheduling to avoid data
dependency in the successive loops. We a show data flow
diagrams to illustrate the point operations for the different
combinations of the previous, current and next values of ݇ in
Fig.7 and Fig 8.
 The data flow diagram shown in Fig. 7 is for the values of ݇ାଵ ൌ ͳ, ݇ ൌ ͳ and ݇ିଵ ൌ ͳ. In this case, the point
operations of the previous loop, current loop and next loop are
the same, hence, there is no transition of the point operations in
the successive loops. There are only two states (st1 and st2) for
each loop to accomplish the field operations (i.e. multiplication,
square and addition) for a point-multiplication loop operation.
The field multiplication takes 1 clock cycle delay due to one
stage pipelining; however, the field square and field adder have
only combinational circuit delay and can be performed in the
same clock cycle. In Fig. 7, the data diagram shows the
utilization of three full-precision multipliers called Mul1, Mul2
and Mul3 in each state to accomplish three multiplications. As
the multiplier, adder and square circuits are cascaded, we can
achieve different field operations in the same clock cycle by
tapping the results respectively.

 For example, in st1, Mul1 and Mul2 outputs
(݅Ǥ ݁Ǥ ܼଵܽ݊݀ ଵܺ) are added and squared to get new ܼଵ
on the fly. The ܼଵ is immediately used in the next loop
as an input to Mul1 and also ܼଵ is saved in Register 1 ሺܴଵ) to use in the next loop. Again, the output of Mul3
is ܼଶ is squared and 4-squared in the same clock to get ܼଶଶ and ܼଶସ. After then, the three outputs (ܼଶ, ܼଶଶ and ܼଶସ) are saved in ܴଷ, ܴସ and ܴହ register respectively
to use in the next loop.

 In state st2, we get output ଵܺ by adding the outputs of

Mul1 and Mul2 and we also get ܺଶ by adding the
output of Mul3 and the content of ܴ ଶ (ܺଶସ). The ܺ ଶ and
its squareǡ ܺଶଶ are directly applied as an input of Mul1
and Mul3 respectively in the st1 of the next loop and
also ܺଶ is squared over squared (4-square) to get ܺଶସ
output in the same clock cycle is saved in the ܴଶ for
the next operation.

Thus, all inputs that are required to begin the next loop are
ready. The dataflow diagram is the same for the combination of
values ݇ାଵ ൌ Ͳ, ݇ ൌ Ͳ and ݇ ିଵ ൌ Ͳ except that the variables
are changed as shown in Algorithm 3.
 In Fig7, a data flow diagram of the loop of point
multiplication is presented for the values of ݇ାଵ ൌ ͳ, ݇ ൌ Ͳ
and ݇ିଵ ൌ Ͳ. The diagram shows three consequent loops (for
six clock cycles) of data flow to illustrate the transition from the
loop of ݇ ൌ ͳ to the loop of the ݇ ൌ Ͳ.

 In clock cycles 1 and 2, the point operations for the
value of ݇ ൌ ͳ is performed. As the next loop for ݇ ൌͲ, the squared outputs of the loop (݇ ൌ ͳ) should be ܼଵଶ, ܼଵସ, ଵܺଶ, and ଵܺସ instead of ܼଶଶ,ܼଶସ, ܺଶଶǡ and ܺଶସ. In
the loop, ܼଵଶ is calculated and saved in ܴହ in the st2.
Again, the output ଵܺ of the loop will be squared and 4-
squared to get ଵܺଶ and ଵܺସ in the st1 of the next loop
(݇ ൌ Ͳ).

 In st1 of the loop of ݇ ൌ Ͳ (at clock cycle 3), the ଵܺଶ
is used as Mul3 input, the ଵܺସ is saved in ܴଶ. In the
same state, the content of ܴହ (ܼଵଶ) is squared to get ܼଵସ
and saved in ܴସ.Thus, the second loop for ݇ ൌ Ͳ can
be started with three multipliers inputs ܺଶ . ܼଵ, ଵܺ. ܼଶ
and ܼଵଶ. ଵܺଶ after the previous loop (݇ ൌ ͳ). In this
case, the loop (݇ ൌ Ͳ) inputs of Mul1 and Mul2 are
the same as the inputs of the previous loop (݇ ൌ ͳ)
due to the last output (the addition of ܴଶ and Mul3) of
the previous loop is ܺଶ; however, the outputs of the
multipliers are different than that of the previous loop.

 Now, the final loop is for ݇ ൌ Ͳ (clock cycles of 5 and
6) is similar to Fig. 6, (no transition) except that the
variables are changed as shown in Algorithm 3.

Algorithm 3: Proposed Low Latency Montgomery Point Multiplication
(2 clock cycles based loop operation is shown)

For ݅ from ݐ െ ʹ down to 0 do

If ݇ ൌ ͳǡ ݇ାଵ ൌ ͳ and ݇ ିଵ ൌ ͳ then{ No transition}
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌ ܲ൫ ଵܺǡܼଵ൯ ܳ൫ܺଶǡܼଶ൯ and Point Doubling: ܳሺܺଶǡ ܼଶሻ ൌ ʹܳሺܺଶǡ ܼଶሻ

Mul1 Mul2 Mul3
St1: ܼ ଵ ՚ ܺଶǤ ܴଵ; ሼ ܴଵ ൌ ܼଵሽ ଵܺ ՚ ଵܺǤ ܴଷǢ ܼଶ ՚ ܺଶଶǤ ܴସǢ ܴଶ ՚ ܺଶସ ;

St2: ଵܺ ՚ ሺݔǤ ሺ ଵܺ ܼଵሻଶ ଵܺ ՚ ଵܺǤ ܼଵሻ; ܺଶ ՚ ܾǤ ܴହ ܴଶ;
 ܴଵ ՚ ሺ ଵܺ ܼଵሻଶ ܴଷ ՚ ܼଶ ܴହ ՚ ܼଶସ ; ܴସ ՚ ܼଶଶ ;
else If ݇ ൌ ͳǡ ݇ାଵ ൌ ͳ and ݇ ିଵ ൌ Ͳ then{Transition :݇ ൌ ͳ to ݇ ൌ Ͳ}
St1: ܼ ଵ ՚ ܺଶǤ ܴଵ; ሼ ܴଵ ൌ ܼଵሽ ܺ ଵ ՚ ଵܺǤ ܴଷǢ ܼଶ ՚ ܺଶଶǤ ܴସǢ ܴଶ ՚ ܺଶସ ;

St2: ଵܺ ՚ ሺݔǤ ሺ ଵܺ ܼଵሻଶ ଵܺ ՚ ଵܺǤ ܼଵሻ; ܺଶ ՚ ܾǤ ܴହ ܴଶ; ܴଵ ՚ ሺ ଵܺ ܼଵሻଶ ܴଷ ՚ ܼଶ ܴହ ՚ ሺሺܺଵ ܼଵሻଶሻଶ ;{ ܴହ ൌ ܼଵଶሽ
If ݇ ൌ Ͳ, ݇ ାଵ ൌ ͳ and ݇ିଵ ൌ Ͳ then {Transition : ݇ ൌ ͳ to ݇ ൌ Ͳ}

St1: ܺଶ ՚ ܺଶǤ ܴଵǢ ሼ ܴଵ ൌ ܼଵሽ ܼଶ ՚ ଵܺǤ ܴଷǢ ܼଵ ՚ ଵܺଶǤ ܴହǢ ܴଶ ՚ ଵܺସ Ǣ ܴସ ՚ ܴହଶ ; { ܴସ ൌ ܼଵସሽ
St2: ܺଶ ՚ ሺݔǤ ሺ ܺଶ ܼଶሻଶ ܺଶ ՚ ܺଶǤ ܼଶሻ; ଵܺ ՚ ܾǤ ܴସ ܴଶ;
 ܴଵ ՚ ሺ ܺଶ ܼଶሻଶ ܴଷ ՚ ܼଵ ܴହ ՚ ܼଵସ ; ܴସ ՚ ܼଵଶ ;
If ݇ ൌ Ͳ, ݇ ାଵ ൌ Ͳ and ݇ିଵ ൌ Ͳ then{ No transition}

St1: ܼଶ ՚ ଵܺǤ ܴଵǢ ሼ ܴଵ ൌ ܼଶሽ ܺଶ ՚ ܺଶǤ ܴଷǢ ܼଵ ՚ ଵܺଶǤ ܴସǢ ܴଶ ՚ ଵܺସ Ǣ
St2: ܺଶ ՚ ሺݔǤ ሺ ܺଶ ܼଶሻଶ ܺଶ ՚ ܺଶǤ ܼଶሻ; ଵܺ ՚ ܾǤ ܴହ ܴଶ;
 ܴଵ ՚ ሺ ܺଶ ܼଶሻଶ ܴଷ ՚ ܼଵ ܴହ ՚ ܼଵସ ; ܴସ ՚ ܼଵଶ ;
Conversion Step: As shown in the Algorithm 1.

Fig. 7. Data flow of LLECC for ݇ାଵ ൌ ͳ , ݇ ൌ ͳ and ݇ ିଵ ൌ ͳ

Thus, the loop of the point operations can be accomplished
utilizing only two clock cycles for any set of values of ݇ାଵ, ݇
and ݇ିଵ.

B. Multiplier with Segmented Pipelining for LLECC

Parallel multipliers are used to reduce latency for point
multiplication in ECC processor implementations and the
majority of reported designs in the literature are based on digit
serial multipliers instead of bit parallel multipliers [13 -17]. Bit
parallel multipliers take larger area and critical path delay as the
size of the multiplier is large due to the large field sizes of the
ECC curves [18]. The subquadratic bit parallel multiplier can
be suitable for a high speed ECC design, however, pipelining is
required to improve speed [11]. The adoption of the pipelining
in the proposed 3 multiplier-based ECC processor is limited as
the loop operation takes place within two clock cycles only.
Thus, only one stage pipelining can be adopted to improve the
performance of the multiplier providing a smart scheduling is
devised to overcome the data dependency. The limitation of
pipelining is a serious bottleneck for the traditional bit parallel
and subquadratic multipliers to achieve significant
performance. This is overcome in our proposed segmented
pipelining technique by implementing n pipelines in parallel,
achieving an overall single stage only pipelining as shown in

Fig. 6. This makes the proposed full-precision multiplier
suitable for the very low latency loop while still maintaining a
high performance. The high performance can allow high
security ECC curves to be deploy in more applications. In
our proposed low latency ECC (LLECC) processor
architecture (as shown in Fig. 6), we consider LLECC
implementation over GF(2163) where we use three parallel
multipliers where each of them is a 163 bit full-precision
multiplier with 14 bit segmented pipelining.

C. Square Circuit, Memory Unit and Control Unit of LLECC

Our proposed least latency ECC (LLECC) processor takes 2
clock cycles for a loop operation of the Montgomery point
multiplications. To accomplish 2 clock cycles based loop
operation, we need to process the multiplier output in same
clock cycle by cascading the adder and square circuits. Thus,
in Fig. 6, there are several extra adder, square circuits and local
registers are considered to calculate some instructions of the
point operation on the fly as compare to Fig .3. The main
memory architecture adopted is the same as that of the
distributed based memory of Fig. 3 used to enhance speed. Our
main memory saves the initial input and the final outputs, and
during a loop operation, the memory supplies the constant
values (x, y, b) as most of the calculated outputs are saved in the
local registers to reduce the delay for memory access.

We also use a separate shift register (k register) to save the
key of the ECC. The shift register shifts 1 bit in every two cycles
to generate a new set of values for ݇ାଵ, ݇ and ݇ିଵ used in the
control unit as shown in Fig. 6. The control unit of the LLECC
is also based on a finite state machine (FSM) that controls the
two clock cycles based point operations and is simpler than the
control unit of the HPECC as most of the operation are
performed concurrently.

D. Critical Path Delay and Clock Cycles of the LLECC

In the proposed low latency ECC (LLECC) architecture, we
perform several instructions in the same cycle by cascading the
multiplier, adder and square circuits as shown in Fig. 6. The
critical path delay of the LLECC is the path delay of MULGF2
+ the reduction part + adder + square + 3x1 mux as shown in
Table II. The critical path delay can be optimised by selecting
the size of w through a trial and error approach.

The total clock cycles of ECC mainly depends on the latency
of the loop operation of the point multiplication. We achieve 2
clock cycles for each loop operation for the Montgomery point
multiplication in projective coordinates which is the theoretical
limit of the Montgomery point multiplication algorithm under
projective coordinates. Again, the coordinates conversion
circuit includes the costly inversion operation. We adopt
multiplicative inversion to reduce area and time complexities

Fig.8. Data flow of LLECC for ݇ାଵ ൌ ͳ , ݇ ൌ Ͳ and ݇ ିଵ ൌ Ͳ

TABLE III :

LATENCY OF THE PROPOSED ECC (MUL ൌ ଵܯ ൌ ͳǡ ଶܯ ݎ ൌ ʹǡ ଷܯ ݎ ൌ͵ǡ ADD=1, SQR=1 AND 4SQR =1)

ECC Initial + point operations + Conversion GF(2163) GF(2571)
HPECC ͷ ሺܯଵሻሺ݉ െ ͳሻ ሺܯଶ+ Inv1+͵ ଷܯ ͺ)

1099 3783

LLECC ͷ ሺͶ ଵሺ݉ܯʹ െ ͳሻ Ͷሻ ሺܯଶ Inv2+͵ܯଶ ͵)
450 -

overheads [9]. As the total latency of the point multiplication in
projective coordinates based on the two clocked cycles loop
operations is comparable to the latency of the final conversion
operation, reducing the clock cycles for the conversion
operation is required. The inversion operation involved in the
conversion step consumes most of the clock cycles and is thus
the focus for optimisation. We use a 4-square circuit to speed
up the multiplicative inversion operation. The total clock
cycles(CCs) for point multiplications of the LLECC = 5 CCs
for initialisation + 4 CCs to start of the loop+ (m-1)x2 CCs for
loop operations + 4 CCs to exit loop+ CCs for Coordinates
conversion(= (m/2) for square + #mulx1) CCs for inversion +23
others) as shown in Table III. The LLECC architecture
consumes extra clock cycles at the start of first loop and at the
end of the final loop operation due to load/unload of variables
to/from the local registers. Again, the latency for inversion
depends on the curve size and defined by ہlogଶ ݉ െ ͳۂ ݄ሺ݉ െ ͳሻ െ ͳǡ where ݄ሺ݉ െ ͳሻ is the Hamming weight. The
other clock cycles, 23 clock cycles that are independent of curve
size include mainly 10 multiplications and 6 addition and 1
square operations. For example, the total clock cycles for
GF2163 = 5+4+162x2+4+113(= (81 + 9) +23) = 450 clock
cycles.

VI. IMPLEMENTATION RESULTS

The architectures have been implemented (placed and
routed) on Xilinx Virtex4, Virtex5 and Virtex7 FPGA
technologies to enable fair comparisons to relevant reported
designs on the same technologies as well as provide
achievable implementation results on more recent
technologies. Where feasible the designs have been
implemented in each Virtex family. The FPGA size selected
was the smallest in the family that could accommodate the
design in terms of area and pin count.

The results of our proposed high speed ECC processor
implementation on Virtex4 (XC4VLX60), Virtex5
(XC5VLX50) and Virtex7 (XC7V330T) for HPECC and again,
Virtex5 (XC5VLX110) and Virtex7 (XC7V690T) for LLECC
over GF(2163), and Virtex7 (XC7VX980T) for HPECC over
GF(2571) using Xilinx ISE 14.5 tool after place and route are
shown in TABLE IV. The presented results are achieved with
the use of high speed timing closure techniques. We used
repeated place and route for different timing constraints to
achieve the best possible result.The high performance ECC
implementations over GF(2163) based on one multiplier
(HPECC_1M) on Virtex4, Virtex5 and Virtex7 consume 12964
slices, 4393 slices and 4150 slices and can operate at maximum

TABLE IV
COMPARISON OF PROPOSED ECC WITH PUBLISHED STATE OF THE ART OVER GF(2M) AFTER PLACE AND ROUTE ON FPGA

Ref. Slices
(Sls)

FFs LUTs Freq.
(MHz)

kP
Time
(µs)

Sls x
Time x
10-3

Latency,
Clock
Cycles

FPGA Resources:
Multipliers(Mul)

ECC over GF2163

[10] 4080 1502 7719 197 20.56 84 4050 Virtex-4 41 bit Karatsuba Mul

[11] 8095 - 14507 131 10.70 87 1429 Virtex-4 163 bit Karatsuba Mul

[12] 16209 7962 26364 154 19.55 317 3010 Virtex-4 55 bit Mastrovito mul

[14] 20807 - - 185 7.72 161 1428 Virtex-4 3 Core 82 bit Mul

[15] 24363 - - 143 10.00 244 1446 Virtex-4 3 GNB 55 bit Mul

[16] 17929 - 33414 250 9.60 172 2751 Virtex-4 3 Digit Serial 55 bit Mul

[17] 12834 6683 22815 196 17.20 221 3372 Virtex-4 2 GNB 55 bit Mul

[21] 8070 - 14265 147 9.70 78 1429 Virtex-4 163 bit Karatsuba Mul

[22] 10417 - - 121 9.00 94 1091 Virtex-4 163 bit Karatsuba Mul

[23] - - 27889 133 16.00 - 2128 Virtex-4 163 bit Karatsuba Mul

[24] 3536 1870 6672 290 14.39 51 4168 Virtex-4 41 bit Digit Serial Mul

HPECC_1M 12964 3077 23468 210 5.32 69 1119 Virtex-4 163 bit Mul

[13] 6150 - 22936 250 5.48 34 1371 Virtex-5 3 Digit Serial 81 bit Mul

[11] 3513 - 10195 147 9.50 33 1429 Virtex-5 163 bit Karatsuba Mul

[17] 6536 4075 17305 262 12.90 84 3379 Virtex-5 2 GNB 55 bit Mul

[21] 3446 - 10176 167 8.60 30 1429 Virtex-5 163 bit Karatsuba Mul

[23] - - 18505 199 11.00 - 2189 Virtex-5 163 bit Karatsuba Mul

[24] 1089 1522 3958 296 14.06 15 4168 Virtex-5 41 bit Digit Serial Mul

[25] 10363 6529 29095 153 5.10 53 780 Virtex-5 2x163 bit Mul

HPECC_1M 4393 3090 16090 228 4.91 22 1119 Virtex-5 163 bit Mul
LLECC_3M 11777 3403 42192 113 3.99 47 450 Virtex-5 3x163 bit Mul

[24] 1476 1886 4721 397 10.51 16 4168 Virtex-7 41 bit Digit Serial Mul

[25] 8736 6529 27105 223 3.50 31 780 Virtex-7 2x163 bit Mul

HPECC_1M 4150 3747 14202 352 3.18 13 1119 Virtex-7 163 bit Mul
LLECC_3M 11657 7969 41090 159 2.83 33 450 Virtex-7 3x163 bit Mul

ECC over GF2571

[10] 34892 6445 66594 107 133.00 4641 14231 Virtex-4 143 bit Karatsuba Mul

[24] 12965 10066 38547 250 57.61 747 14420 Virtex-7 143 bit Digit Serial Mul

HPECC_1M 50336 29217 141078 111 34.05 1815 3783 Virtex-7 571 bit Mul

clock frequencies of 210 MHz, 228 MHz and 352 MHz
respectively. The achievement of high frequency is due to the
design of the high performance field multiplier. Our Low
latency ECC processor based on three parallel multipliers
(LLECC_3M) improves speed by reducing latency with an area
overhead. The proposed LLECC on Virtex7 can manage 159
MHz frequency by consuming the same area of the Virtex5 (113
MHz and 11777 Slices).

TABLE IV provides detailed comparison to state of the art
using the same technology.

Our previous high throughput design presented [24] is the
best reported implementation in terms of area-time metric; our
HPECC implementation presented here over GF(2163) on
Virtex7 achieves a better metric value (area-time metric of 13)
even using a full precision multiplier. Our previous high speed
ECC implementation presented in [25] is the fastest FPGA
design to date on Virtex7. Our proposed design in this paper
outperforms [25] in both speed and area-time metrics.

For Virtex4, the previous highest speed implementation is
presented in [14] and consumed 20807 slices to achieve 7.72
µs using three 82 bit parallel multiplier cores. Our HPECC
implementation on Virtex4 consumes 38% less area and shows
31% speed improvement. Again, our work uses less arithmetic
(163 bit multiplier) resource to gain 2.33 times improvement in
the area-time metric(Slices x Time x 10-3) as compared to the
work in [14]. In [16], the authors presented a high speed design
that used 17929 slices to attain 9.60 µs for the point
multiplication time; meanwhile, our proposed work on Virtex4
is 45% faster than that in [16] and consuming less area. The
work presented in [15] uses three 55 bit multipliers consumed
two times the area to achieve 10 µs whereas our design can
show two times better speed. The most relevant work is
presented in [11] where the authors using a 163 bit multiplier
with four stage pipelining to achieve maximum clock frequency
131 MHz. Our design is based on 163 bit multiplier with two
stages pipelining achieved a clock frequency of 210 MHz that
is 60% clock frequency speed up improvement. Again, our ECC
processor implementation is twice as fast with only 60% more
slices; this translates to 21% improvement in the area-time
metric than the reported efficient design in [11]. Our design
shows 18% better area-time metric than the previous best
optimized design presented in [10]. The work presented in [12]
used pipelining technique to achieve high clock frequency. Our
proposed ECC processor uses 2 stages pipelining to get 36%
improvement in clock frequency speed over [12]. The work in
[21] is the previous version of [11]. The work in [22] and [23]
are a similar implementation to [11]; however, [11] is a LUTs
optimised implementation. In comparison with [21], [22] and
[23], our work shows better results than the best results they
presented.

For Virtex5, the best reported performance result over
GF(2163) is 5.48 µs and is presented in [13] with 6150 slices.
Our proposed ECC processor consumes only 4393 slices to
compute a point multiplication in 4.91 µs is better in both speed
(10%) and area (29%) than that in [13]. Our state of art achieves
double the speed of [11] but consuming only 25 % more slices.
The presented work in [17] consumes 6536 slices to get a speed
of 12.9 µs; our area-time metric is 3.81 times better than that in
[17].

The proposed HPECC architecture over GF(2571) (the

highest security NIST curve) is the first reported full precision
multiplier based implementation and sets a new time record for
point multiplication (37.5 µs on Virtex7).

Our low latency ECC (LLECC) requiring only two clock
cycles for Montgomery point multiplication is the first
implementation in the literature with such schedule. The
proposed LLECC design has the lowest latency figure (450
clock cycles for the curve over GF(2163)) reported to date while
still achieving a high clock frequency thanks to the novel
pipelining technique in the field multiplier and the smart
breaking of the long critical path delay by inserting local
registers. Furthermore, the LLECC over GF(2163) implemented
on Virtex7 shows the fastest ever figure for point multiplication
(2.83 µs) on FPGA at the theoretical limit of performance.

VII. CONCLUSIONS

This paper presented a very high speed elliptic curve
cryptography processor for point multiplication on FPGA based
on a novel 2 stages pipelined full-precision multiplier in
HPECC, and a 1 stage pipelined full-precision multiplier in
LLECC with careful scheduling in both cases for the combined
Montgomery point multiplication algorithm.

Our proposed high performance one multiplier based
architecture takes six cycles for a loop of the Montgomery point
multiplication in the projective coordinates without any
pipelining delay whereas our low latency ECC (3-multiplier
based) processor takes only two clock cycles. The architectures
have been implemented (placed and routed) on Xilinx Virtex4,
Virtex5 and Virtex7 FPGA families resulting in the fastest
reported implementations to date to the best knowledge of the
authors. On the Virtex4 our ECC point multiplication over
GF(2163) takes 5.32 µs with 13418 slices - is faster than the
fastest previously reported Virtex 4 design [14] and also faster
than the fastest reported design to date (5.48 µs) which was on
a Virtex 5 [13]. On Virtex5, our design over GF(2163) is not
only even faster at 4.91 µs but also smaller than that of [13].
Our implementation on the new Virtex7 FPGA technology
achieves the best area-time performance with the highest speed
to date; an ECC implementation takes only 3.18 µs using 4150
slices. To evaluate scalability of our contributions, we also
implemented the proposed one multiplier based architecture
over GF(2571), the highest security curve in the NIST standard
[5], on Virtex 7; this is the first reported implementation, which
can complete a point multiplication by taking only 37.54 µs.
Our parallel multipliers based ECC design is the first reported
full-precision parallel architecture which shows the highest
speed (2.83 µs) for the point multiplication over GF(2163) with
the lowest latency (450 clock cycles) on FPGA.

The proposed ECC processor implementations would enable
faster deployment of public-key cryptography protocols for
example in terms of key agreement (ECDH) and digital
signatures (ECDSA) across a range of platforms with improved
efficiency in terms of area/power resource.

REFERENCES

[1] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of

Computation, vol. 48(177), pp. 203-209, January 1987.

[2] V.Miller, “Use of Elliptic Curves in Cryptography,” Advances in

Cryptology- CRYPTO’85, pp. 417-426, Springer, 1986.

[3] N. Koblitz, A. Menezes, and S. Vanstone, “The State of Elliptic Curve

Cryptography,” Des. Codes Cryptography, vol. 19, no. 2-3, pp. 173-193,

Mar. 2000.

[4] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve

Cryptography. New York, Springer-Verlag, 2004.

[5] U. S. Department of Comerce/NIST, “National Institute of Standards and

Technology,” Digital Signature Standard, FIPS Publications 186-

2,January 2000.

[6] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curve Over
GF(2m) without Precomputation,” in Proc. 1st Int. Workshop

Cryptograph. Hardw. Embedded Syst., 1999, pp. 316-327.

[7] S. Kummar, T. Wollinger, and C. Par, “Optimum digit serial GF(2m)

multiplier for curve based cryptography,” IEEE Trans. Comput., vol. 55,

no. 10, pp. 1306-1311, Oct. 2006.

[8] Z. Khan and M. Benaissa, "Low area ECC implementation on FPGA," in

Proc. IEEE 20th Int. Conf. Electronics, Circuits, and Systems, 2013,

pp.581-584.

[9] T.Itoh and S. Tsujii,”A fast algorithm for computing multiplicative
inverses in GF (2m) using normal bases,” J. Inf. Comput., vol. 78, no.3,

pp. 171-177, Sep. 1988.

[10] B. Ansari, M. Hasan, "High-Performance Architecture of Elliptic Curve

Scalar Multiplication," IEEE Trans. Computers, vol.57, no.11, pp.1443-

1453, Nov.2008.

[11] S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoretical Modeling of

Elliptic Curve Scalar Multiplier on LUT-Based FPGAs for Area and

Speed,” IEEE Trans. VLSI Systems, vol. 21, no. 5, pp. 901–909, May.

2013.

[12] W. Chelton and M. Benaissa, “Fast Elliptic Curve Cryptography on
FPGA,” IEEE Trans. VLSI Systems, vol. 16, no. 2, pp. 198–205, Feb.

2008.

[13] G. Sutter and J. Deschamps and J. Imana, “Efficient Elliptic Curve Point
Multiplication Using Digit Serial Binary Field Operations,” IEEE Trans.

Ind. Electron., vol. 60, no. 1, pp. 217-225, 2013.

[14] Y. Zhang, D. Chen, Y. Choi, L. Chen and S.-B. Ko, “A high performance
ECC hardware implementation with instruction-level parallelism over

GF(2163),” Microprocess. Microsyst., vol. 34, no. 6, pp. 228–236, Oct.

2010.

[15] H. M. Choi, C. P. Hong and C. H. Kim “High Performance Elliptic Curve

Cryptographic Processor Over GF(2163),” in proc. 4th IEEE Intl.

Symposium on Electronic Design, Test & Applications, DELTA,2008, pp.

290 – 295.

[16] H. Mahdizadeh, and M. Masoumi, "Novel Architecture for Efficient

FPGA Implementation of Elliptic Curve Cryptographic Processor Over

GF(2163)," IEEE Trans. VLSI Systems, vol. 21, no.12, pp. 2330-2333, Dec.

2013.

[17] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA
implementations of point multiplication on binary Edwards and

generalized Hessian curves using Gaussian normal basis,” IEEE Trans.

VLSI Systems, vol. 20, no. 8, pp. 1453-1466, Aug. 2012.

[18] H. Fan, M. A. Hasan, “ A survey of some recent bit-parallel multipliers,”
Elsevier - Finite Fields and Their Applications, Vol. 32, pp. 5-43, March

,2015.

[19] M. A. Hasan, A.H. Namin, and C. Negre., "Toeplitz Matrix Approach for

Binary Field Multiplication Using Quadrinomials," IEEE Transactions on

VLSI Systems, vol.20, no.3, pp.449-458, March, 2012.

[20] B. Rashidi, R.R. Farashahi, S.M. Sayedi, “High-speed and pipelined finite

field bit-parallel multiplier over GF(2m) for elliptic curve cryptosystems,”

in Proc. 11th Int. ISC Conf. on Info. Security and Cryptology (ISCISC),

2014, pp.15-20.

[21] C. Rebeiro, S. Roy, and D. Mukhopadhyay, “Pushing the Limits of High-
Speed GF(2m) Elliptic Curve Scalar Multiplication on FPGAs,” lecture
Notes in Comp. Sc. – CHES 2012 vol. 7428, pp. 496-511.

[22] S. Liu, L. Ju, X. Cai, Z. Jia, Z. Zhang, “High Performance FPGA
Implementation of Elliptic Curve Cryptography over Binary Fields,” in
proc. 13th IEEE Int. Conf. on Trust, Security and Privacy in Comp. and
Communications(TrustCom), 2014, pp.148-155.

[23] A.P. Fournaris, J. Zafeirakis, and O. Koufopavlou, "Designing and
Evaluating High Speed Elliptic Curve Point Multipliers," in proc. 17th
Euromicro Conf. on, Digital System Design (DSD), 2014, pp.169-174.

[24] Z. Khan, M. Benaissa, "Throughput/Area Efficient ECC Processor on
FPGA," IEEE Transactions on Circuits and Systems II: Express Briefs,
vol.62, no.11, pp.1078-1082, Nov. 2015.

[25] Z. Khan and M. Benaissa, “High Speed ECC Implementation on FPGA
over GF(2m),” in Proc.25th Int. Conf. on Field-programmable Logic and
Applications (FPL), 2-4 Sept. 2015, pp.1-6.

[26] N. Petra, D. D. Caro and A. G. M. Strollo, "A Novel Architecture for
Galois Fields GF(2^m) Multipliers Based on Mastrovito Scheme," IEEE
Transactions on Computers, vol. 56, no. 11, pp. 1470-1483, Nov. 2007.

[27] H. Fan and M. A. Hasan, "Fast Bit Parallel-Shifted Polynomial Basis

Multipliers in GF(2n)," IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 53, no. 12, pp. 2606-2615, Dec. 2006.

Zia U. A. Khan received his BSc Engg.
in Electrical and Electronic
Engineering from Chittagong
University of Engineering and
Technology, Bangladesh. He received
his MSc Engg. in Data Communication
Engineering from The University of
Sheffield, UK in 2010. He is currently a
PhD candidate at the University of

Sheffield. His research interests are hardware and
hardware/software design and implementation of arithmetic
circuits and cryptography processors for high speed, low power
and scalable applications. He is a student member of IEEE.

Mohammed Benaissa received the
PhD degree in VLSI signal processing
from the University of Newcastle,
Upon Tyne, UK, in 1990. He has been
with the Department of Electronic and
Electrical Engineering, University of
Sheffield, Sheffield, UK, since 1999.
His research interests focus on the

design and implementation of innovative electronic circuits and
systems and their application to Communications and
Healthcare. He has published over 150 papers on contributions
to algorithmic, architectural, and circuit issues in these areas.
He is a Senior Member of the IEEE, a College and Panel
member of the EPSRC, and has served on the Technical
Program Committees of numerous conferences.

