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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR PROBLEMS IN STATIC

THERMO-ELASTICITY WITH INCOMPLETE BOUNDARY DATA

L. MARIN, A. KARAGEORGHIS, D. LESNIC, AND B. T. JOHANSSON

Abstract. An inverse problem in static thermo-elasticity is investigated. The aim is to reconstruct the unspecified
boundary data, as well as the temperature and displacement inside a body from over-specified boundary data
measured on an accessible portion of its boundary. The problem is linear but ill-posed. The uniqueness of the
solution is established but the continuous dependence on the input data is violated. In order to reconstruct a stable
and accurate solution, the method of fundamental solutions is combined with Tikhonov regularization where the
regularization parameter is selected based on the L-curve criterion. Numerical results are presented in both two
and three dimensions showing the feasibility and ease of implementation of the proposed technique.

1. Introduction

In many practical applications that involve the determination of the temperature and displacement in structures
of aircraft and propulsion systems, gas and steam turbines, or in chemical and nuclear reactors, measurements are
possible only on an accessible part of the boundary. This can be caused by the physical environment or harsh
conditions encountered which prevents the boundary conditions from being specified, prescribed or measured over
the whole of the boundary of the body under consideration. The physical situation described above gives rise to
inverse boundary value problems in which the thermo-elastic fields in the body and on the inaccessible boundary
have to be determined from over-prescribed displacement and traction measurements taken on a portion of the
accessible boundary.

Some previous research concerned inverse steady-state, quasi-static and dynamic thermo-elastic analyses. For
example, early studies by Noda [26] and Noda et al. [27] investigated inverse transient thermo-elastic problems in
an infinitely long cylinder and in a transversely-isotropic body, respectively. Later on, Lee and Yang [20] and Yang
et al. [31] investigated inverse problems predicting the heat flux and thermal stresses from strain measurements
in an infinitely long annular cylinder, whilst Khajehpour and Hematiyan [18] presented a domain decomposition
inverse analysis for solving a thermo-elastic problem under a thermal shock.

Quasi-static inverse estimation of missing boundary conditions in thermo-elastic functionally graded and nonlinear
temperature materials have been considered by Tanaka et al. [30] using the dual reciprocity boundary element
method (DRBEM).

As far as the steady-state inverse thermo-elasticity analysis is concerned, numerical research in two and three
dimensions was initiated in [8, 9], with much earlier theoretical uniqueness results being established in [19] (where
the quasi-static and dynamic cases were also addressed).

Recently, the authors have solved numerically the inverse boundary value problem in static thermo-elasticity
proposed in [19] using the method of fundamental solutions (MFS) [16, 23, 24]. In the present paper, we consider
a similar type but different inverse formulation of the previously investigated problem for which we have also been
able to prove the uniqueness of solution in Section 2. Furthermore, the numerical solution of the problem based
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on the MFS combined with the Tikhonov regularization method (TRM) is attempted in Section 3. This yields
accurate and stable results in both two and three dimensions as illustrated in Section 4. Finally, conclusions and
ideas for future work are presented in Section 5.

2. Mathematical formulation

We consider a homogeneous, linear-elastic and isotropic body occupying a simply-connected domain Ω ⊂ R
n, n = 2, 3,

bounded by a smooth boundary ∂Ω. For simplicity, we assume that internal heat sources and other body forces
are absent. Then, in the static regime, the equations of thermo-elasticity read as, see [29],

Au := G

[
∇ ·

(
∇u+ (∇u)

T
)
+

2 ν

1− 2 ν
∇ (∇ · u)

]
= γ∇T in Ω. (2.1)

κ∆T = 0 in Ω, (2.2)

where κ > 0 is the thermal conductivity and

γ =
2 (1 + ν) αT G

1− 2 ν
,

ν =

⎧
⎪⎨
⎪⎩

ν plane strain (n = 2) or n = 3,

ν

1 + ν
plane stress (n = 2),

αT =

⎧
⎪⎨
⎪⎩

αT plane strain (n = 2) or n = 3,

αT (1 + ν)

1 + 2 ν
plane stress (n = 2),

T is the temperature, u is the displacement, G is the shear modulus, αT is the coefficient of thermal expansion and
ν ∈ (0, 1/2) is the Poisson ratio. In (2.2), the thermal conductivity κ has been assumed to be constant, i.e. equal
to its value at average temperature. More general space or temperature variations of κ could also be considered,
see the numerical implementations in [30] and [18], but for our theoretical study of uniqueness of a solution and
for the MFS implementation these more complex cases are deferred to a future work.

The heat flux and the traction on the boundary are defined, respectively, as

q := −κ∇T · n on ∂Ω, (2.3)

t := σ(u)n = σ̂(u)n− γ T n, on ∂Ω, (2.4)

where σ(u) is the stress tensor, n is the outward unit normal to the boundary and σ̂(u) is the so-called pseudo-stress
tensor, [28], given by

σ̂(u) = 2G

[
ε+

ν

1− 2 ν
tr(ε)I

]
, (2.5)

where I is the identity tensor and tr(ε) denotes the trace of the strain tensor which is defined by

ε(u) =
1

2

(
∇u+ (∇u)T

)
. (2.6)

We assume that the displacement is specified over the whole boundary ∂Ω, i.e.

u = f on ∂Ω, (2.7)

where f is a specified vector function.

If T is prescribed on the whole boundary ∂Ω then this gives rise to the direct problem of thermo-elasticity which
is well-posed, see e.g. [12]. However, in our inverse problem, only the part Γ1 (assumed non-empty open) of



INCOMPLETE BOUNDARY DATA IN STATIC THERMO-ELASTICITY 3

∂Ω is accessible to measurement and on it we assume that both the heat flux and the traction are known by
measurements, namely, we have the supplementary conditions

− κ
∂T

∂n
= q̃ on Γ1, (2.8)

t = t̃ on Γ1, (2.9)

where q̃ and t̃ are specified functions on Γ1. We note that the related inverse problem given by equations (2.1),
(2.2) subject to the boundary conditions

t = t̃ on ∂Ω, (2.10)

u = f on Γ1, (2.11)

T = T̃ on Γ1, (2.12)

has been investigated theoretically in [19]. For completeness, we mention the Cauchy problem given by equations
(2.1), (2.2), (2.7), (2.8) and (2.12) which has been investigated in [15].

A regularized MFS has been proposed by the authors for solving the problem given by equations (2.1), (2.2), (2.7),
(2.8) and (2.12) in [22] and the problem given by equations (2.1), (2.2), (2.10)–(2.12) in [16] and it is the purpose
of the present study to develop the same method for solving the new inverse problem given by equations (2.1),
(2.2), (2.7)-(2.9). One can remark that both these inverse problems can also be solved iteratively by minimizing

the least squares gap
1

2
‖u−f‖(L2(Γ1))n with respect to T |Γ2

, where Γ2 := ∂Ω\Γ1. However, for the inverse problem

(2.1), (2.2), (2.10)–(2.12), the corresponding direct problem is of Neumann traction type (2.10) and the additional
rigid body motion has to be factorized in order to obtain a unique solution, whilst for the inverse problem (2.1),
(2.2), (2.7)-(2.9) which is investigated in this study, the corresponding direct problem is of mixed type (with
traction specification (2.9) on Γ1 and displacement u = f on Γ2) and hence it has at most one solution. Another
new contribution in this paper is that we establish the uniqueness of solution of the inverse problem (2.1), (2.2),
(2.7)-(2.9), as described next.

2.1. Uniqueness of solution. First, we remark that in the one-dimensional case Ω = (0, 1), the problem given
by equations (2.1), (2.2), (2.7)-(2.9) with Γ1 = {0} becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2G (1− ν)

1− 2 ν

d2u

dx2
= γ

dT

dx
, x ∈ (0, 1),

d2T

dx2
= 0, x ∈ (0, 1),

u(0) = u(1) = 0,

T ′(0) = 0,

2G (1− ν)

1− 2 ν
u′(0)− γ T (0) = 0.

(2.13)

If the last condition in (2.13) is dropped, we obtain the nontrivial solution (u(x), T (x)) = (0, ξ) with arbitrary
ξ ∈ R, whilst if the condition before last in (2.13) is dropped we obtain the nontrivial solution

(u(x), T (x)) =

(
(1− 2ν)γξ

4G(1− ν)
(x2 − x), ξ

(
x−

1

2

))
.

This shows that the supplementary conditions (2.8) and (2.9) are essential for the uniqueness of solution of the
inverse problem.
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Integrating the full system of equations (2.13) we obtain
⎧
⎪⎨
⎪⎩

γ T (x) =
2G (1− ν)

1− 2 ν

du

dx
(x), x ∈ (0, 1),

T (x) = constant, x ∈ (0, 1),

which upon imposing u(0) = u(1) = 0 readily yield T = 0 = u in Ω.

In higher dimensions we prove the following uniqueness theorem.

Theorem 1. The inverse problem given by equations (2.1), (2.2), (2.7)-(2.9) has at most one solution.

Proof. Assuming that there are two solutions and taking their differences, proving uniqueness becomes equivalent
to showing that the only solution of equations (2.1) and (2.2) subject to the homogeneous boundary conditions
(2.7)-(2.9), i.e.

u = 0 on ∂Ω, (2.14)

− κ
∂T

∂n
= 0 on Γ1, (2.15)

t = 0 on Γ1, (2.16)

is the trivial solution u = 0 and T = 0 in Ω.

We follow similar ideas to those in the proof of Theorem 1 in [19] for the uniqueness of solution of the inverse problem
given by equations (2.1), (2.2), (2.10)–(2.12). Assume sufficient smoothness to work with classical functions.

First, we construct w as a solution of

G∆w(x) = m δ(x− y), x ∈ R
n, (2.17)

where m is a given and fixed (constant) vector in R
n, n = 2, 3, δ is the Dirac delta function and y is an arbitrary

fixed point in R
n.

Recall Betti’s formula in elasticity
∫

Ω

(v · Au− u · Av) dΩ =

∫

∂Ω

[v · σ̂(u)n− u · σ̂(v)n] dS, (2.18)

where the operator A is defined in (2.1). We remark that

Aw = G∆w +
G

1− 2 ν
∇ (∇ ·w) = m δ(x− y) +

G

1− 2 ν
∇ (∇ ·w) ,

and also that for v := ∇×w we have

Av = A∇×w = ∇× (m δ(x− y)) +
G

1− 2 ν
∇× (∇ (∇ ·w)) = ∇× (m δ(x− y)) ,

since the curl of a gradient is equal to zero. Then, applying (2.18) for u satisfying equations (2.1) and (2.2) and
v = ∇×w we obtain∫

Ω

[γ∇T · v − (∇× (m δ(x− y))) · u] dΩ =

∫

∂Ω

[v · σ̂(u)n− u · σ̂(v)n] dS

=

∫

Γ1

γ T n · v dΓ1 +

∫

Γ2

v · σ̂(u)n dΓ2, (2.19)

where use has been made of the homogeneous Dirichlet boundary condition (2.14) on ∂Ω. Now, using Gauss’
divergence formula for the vectorial function Tv, Stokes’ theorem and that the divergence of the curl is zero, we
obtain that the left-hand side of (2.19) is equal to

∫

Γ1

γ T n · v dΓ1 +

∫

Γ2

γ T n · v dΓ2 +

∫

Ω

δ(x− y)m · (∇× u) dΩ−

∫

∂Ω

δ(x− y)m · u dS.
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Taking y /∈ ∂Ω, the last boundary integral vanishes and equation (2.19) simplifies to

∫

Γ2

(σ̂(u)n− γ T n) · v(x;y) dΓ2 =

⎧
⎨
⎩

m · ∇ × u(y) if y ∈ Ω,

0 if y ∈ R
n\Ω.

From this identity, it follows that the left-hand side is a harmonic function in y, which is zero in R
n\Ω (which is

connected because Ω is simply connected) and is smooth across Γ1. From standard unique continuation results for
harmonic functions it follows that the above expression is also identically zero in Ω. Therefore,

m · (∇× u(y)) = 0 in Ω,

and, since m is arbitrary,
∇× u(y) = 0 in Ω.

This means that u is an irrotational field and since Ω is simply connected it follows that there exists a potential
function ϕ such that u = ∇ϕ, see e.g. [7, Corollary 3, p.217]. Using this in equation (2.1) we get that

2G (1− ν)

1− 2 ν
∇ (∆ϕ) = γ∇T in Ω, (2.20)

and integrating, we obtain
2G (1− ν)

1− 2 ν
∆ϕ = γ T + c in Ω. (2.21)

where c is some constant.

Since u = 0 on ∂Ω, see (2.14), and u = ∇ϕ we can conclude that ϕ = c0 =constant on ∂Ω. Without loss of
generality we can assume that

ϕ = 0 in ∂Ω. (2.22)

Taking the Laplace operator in equation (2.21) and using equation (2.2) we obtain that the function ϕ is biharmonic,
i.e.

∆2ϕ = 0 in Ω, (2.23)

satisfying

ϕ = 0,
∂ϕ

∂n
= 0 on ∂Ω. (2.24)

Problem (2.23) and (2.24) is a direct Dirichlet problem for the biharmonic equation the solution of which is

ϕ = 0 in Ω. (2.25)

Since u = ∇ϕ, we have shown that
u = 0 in Ω.

Then, from (2.1) and (2.2), we obtain

∇T = 0 and ∆T = 0 in Ω

which yields that T =constant= C.
Further, from (2.15) we have

0 = σ̂(u)n = γ Tn on ∂Ω,

which immediately yields that C = 0. Thus T = 0, which concludes the uniqueness proof. �

Even though this theorem ensures the uniqueness of solution, the inverse problem (2.1), (2.2), (2.7)-(2.9) is still
ill-posed since small errors in the input data cause large errors in the output solution. This instability can be seen
as follows. Assuming a known boundary temperature on Γ2, say T = T0 on Γ2, then one can directly obtain the
temperature T (as a function of T0) in Ω, and its gradient ∇T in Ω, by solving a mixed well-posed problem for the
Laplace equation (2.2) with the Neumann boundary condition (2.8) on Γ1 and the Dirichlet boundary condition
T = T0 on Γ2. What then remains is a data completion problem for the displacement u in the elliptic equation
Au = γ∇T , with known right-hand side, where from displacement and pseudo-traction (̂t = σ̂(u)n = t̃+γ T |Γ1

n)



6 L. MARIN, A. KARAGEORGHIS, D. LESNIC, AND B. T. JOHANSSON

values on Γ1, one has to find the correct boundary function T0 on Γ2 (since the pseudo-traction on Γ1 will depend
on T0) to match the given displacement on Γ2. This type of data completion is a classical Cauchy problem for an
elliptic equation, which is well-known to be ill-posed with respect to the noise in the data, see further [1]. In a more
technical language, one can build on this to reformulate problem (2.1), (2.2), (2.7)-(2.9) as an operator equation
on the boundary with the linear operator having an unbounded inverse. The details for this, however, are outside
the scope of this work. Likewise, the interesting challenge of finding classes of functions satisfying uniform bounds
and for which stability can be restored in (2.1), (2.2), (2.7)-(2.9) will not be investigated in this study.

In the next section we describe the application of the MFS for the solution of the inverse and ill-posed linear
problem (2.1), (2.2), (2.7)-(2.9).

An alternative to the MFS is the boundary element method (BEM), see [13], which eliminates the need for selecting
exterior sources but requires the evaluation of boundary integrals. Moreover, if the mechanical and/or thermal
properties are space- or temperature-dependent, then one can employ the finite element method (FEM), see [10],
or the DRBEM, see [30].

3. The method of fundamental solutions (MFS)

In the application of the MFS to the thermo-elasticity system [17, 21], first, the harmonic temperature is sought
as a linear combination of non-singular fundamental solutions

TN (x) =

N∑

ℓ=1

cℓ F (x, ξℓ), x ∈ Ω, (3.1)

where (cℓ)ℓ=1,N are unknown coefficients, the sources (ξℓ)ℓ=1,N �∈ Ω and

F (x, ξℓ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
1

2π κ
log |x− ξ| if n = 2,

1

4π κ |x− ξ|
if n = 3,

(3.2)

is the fundamental solution of Laplace’s equation.

Using equations (2.3), (3.1) and (3.2), we can also derive an approximation for the heat flux

qN (x) = −κ
∂TN

∂n
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2 π

N∑

ℓ=1

cℓ
(x− ξℓ) · n(x)

|x− ξ|2
if n = 2

, x ∈ ∂Ω.

1

4π

N∑

ℓ=1

cℓ
(x− ξℓ) · n(x)

|x− ξ|3
if n = 3

(3.3)

Next, we approximate the displacement vector as

uN (x) =

N∑

ℓ=1

U(x, ξℓ)dℓ +
αT

2

(
1 + ν

1− ν

) N∑

ℓ=1

cℓ (x− ξℓ)F (x, ξℓ), x ∈ Ω, (3.4)

where (dℓ)ℓ=1,N are unknown coefficients and

U(x, ξ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

8 πG(1− ν)

[
−(3− 4 ν) log |x− ξ| I +

(x− ξ)⊗ (x− ξ)

|x− ξ|2

]
if n = 2,

1

16 πG(1 − ν)

[
(3− 4 ν)

|x− ξ|
I +

(x− ξ)⊗ (x− ξ)

|x− ξ|3

]
if n = 3,

(3.5)
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are the fundamental solutions of the n = 2− and n = 3−dimensional Lamé system of elasticity.

As boundary collocation points we take (xj)j=1,N1
and (xj)j=N1+1,N which are uniformly distributed on Γ1 and

Γ2, respectively. Imposing the boundary conditions (2.7) and (2.8) at these points gives

uN(xm) = f(xm), m = 1, N, (3.6)

and

qN (xm) = q̃(xm), m = 1, N1, (3.7)

where uN and qN are given by (3.4) and (3.3), respectively. It remains to impose boundary condition (2.9) which
yields:

(i) In n = 2 dimensions, see [16]:

N∑

ℓ=1

T(xm, ξℓ)dℓ −
αT G

2 π κ

(
1 + ν

1− ν

) N∑

ℓ=1

cℓ

[(
− log |xm − ξℓ|+

ν

1− 2 ν

)
n(xm) +

(xm − ξℓ) · n(xm)

|xm − ξℓ|
2

(xm − ξℓ)

]

= t̃(xm), m = 1, N1, (3.8)

where T is the two-dimensional fundamental solution for the traction tensor in elasticity given by, see e.g. [2],

T1j(x, ξ) =
2G

1− 2 ν

[
(1− ν)

∂U1j

∂x1
(x, ξ) + ν

∂U2j

∂x2
(x, ξ)

]
n1(x)

+G

[
∂U1j

∂x2
(x, ξ) +

∂U2j

∂x1
(x, ξ)

]
n2(x), j = 1, 2,

T2j(x, ξ) = G

[
∂U1j

∂x2
(x, ξ) +

∂U2j

∂x1
(x, ξ)

]
n1(x)

+
2G

1− 2 ν

[
ν
∂U1j

∂x1
(x, ξ) + (1− ν)

∂U2j

∂x2
(x, ξ)

]
n2(x), j = 1, 2.

(ii) In n = 3 dimensions, see [24]:

N∑

ℓ=1

T(xm, ξℓ)dℓ −
αT G

4 π κ

(
1 + ν

1− ν

) N∑

ℓ=1

cℓ

[(
−

1

1− 2 ν

1

|xm − ξℓ|

)
n(xm) +

(xm − ξℓ) · n(xm)

|xm − ξℓ|
3

(xm − ξℓ)

]

= t̃(xm), m = 1, N1, (3.9)

where T is the three-dimensional fundamental solution for the traction tensor in elasticity given by, see e.g. [2],

T1k(x, ξ) =
2G

1− 2 ν

[
(1− ν)

∂U1k

∂x1
(x, ξ) + ν

(
∂U2k

∂x2
(x, ξ) +

∂U3k

∂x3
(x, ξ)

)]
n1(x)

+G

[
∂U1k

∂x2
(x, ξ) +

∂U2k

∂x1
(x, ξ)

]
n2(x) +G

[
∂U1k

∂x3
(x, ξ) +

∂U3k

∂x1
(x, ξ)

]
n3(x), k = 1, 2, 3,

T2k(x, ξ) =
2G

1− 2 ν

[
(1− ν)

∂U2k

∂x2
(x, ξ) + ν

(
∂U3k

∂x3
(x, ξ) +

∂U1k

∂x1
(x, ξ)

)]
n2(x)

+G

[
∂U2k

∂x3
(x, ξ) +

∂U3k

∂x2
(x, ξ)

]
n3(x) +G

[
∂U2k

∂x1
(x, ξ) +

∂U1k

∂x2
(x, ξ)

]
n1(x), k = 1, 2, 3,

T3k(x, ξ) =
2G

1− 2 ν

[
(1− ν)

∂U3k

∂x3
(x, ξ) + ν

(
∂U1k

∂x1
(x, ξ) +

∂U2k

∂x2
(x, ξ)

)]
n3(x)

+G

[
∂U3k

∂x1
(x, ξ) +

∂U1k

∂x3
(x, ξ)

]
n1(x) +G

[
∂U3k

∂x2
(x, ξ) +

∂U2k

∂x3
(x, ξ)

]
n2(x), k = 1, 2, 3.
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The systems of equations (3.6), (3.7) and (3.8) or (3.9) consist of (n + 1)N1 + nN linear equations in (n + 1)N
unknowns, and we thus require that (n+1)N1 ≥ N . We write these linear systems of equations in the generic form

Ax = f , (3.10)

where A is the matrix with (n + 1)N1 +nN rows and (n + 1)N columns, f is a known right-hand side vector given
by

f =

[
(f(xm))m=1,N , (q̃(xm))m=1,N1

,
(
t̃(xm)

)
m=1,N1

]T
(3.11)

and x is the desired solution containing the vector of MFS coefficients, namely,

x =
[
(dℓ)ℓ=1,N , (cℓ)ℓ=1,N

]T
. (3.12)

Since the inverse problem under consideration is ill-posed, the resulting system of equations (3.10) is ill-conditioned,
and in order to obtain a stable solution we employ the TRM [14, Chapter 4.4], see also, [25, Chapter 5] which
yields the solution

xλ =
(
ATA+ λI

)−1
AT

f , (3.13)

where λ > 0 is a regularization parameter to be prescribed and I is the identity matrix of order (n + 1)N . In this
paper, we choose the regularization parameter at the corner of the L-curve obtained by plotting the residual norm,
‖Ax− f‖2, versus the solution norm, ‖x‖2 for many positive values of λ, see [14, Chapter 4.7] or [25, Chapter 5.4.2].

Other regularization methods based on the singular value decomposition (SVD) [14, Chapter 3.2], see also, [25,
Chapter 4], as well as other criteria for choosing the regularization parameter, e.g. the discrepancy principle or the
generalized cross validation can be employed, see [23, 24].

One can also remark that the unknowns (dℓ)ℓ=1,N and (cℓ)ℓ=1,N in the vector x in (3.12) represent the intensities

of the fictitious point forces in (3.4) and heat sources in (3.1), respectively. Consequently, they represent different
physical quantities and may have different orders of magnitude. Some scaling for normalization could potentially
be used for the different components of the vector x. However, the inaccuracies observed in some of the results
presented in the next section are not due to the MFS discretization but to the added noise in the input data.
Hence, the normalization of the components of vector x did not seem necessary. On the other hand, one could
use different regularization parameters, i.e. replace λI in (3.13) by a diagonal matrix whose first nN entries are
equal to λ1 > 0 and its last N entries are equal to λ2 > 0. In this case, however, one would have to choose
two regularization parameters λ1 and λ2 using, for example, the L-surface method [5], which would render the
investigation considerably more complicated and tedious.

4. Numerical examples

Throughout this section the material constants were taken to be as follows: G = 4.8 × 1010N/m2, ν = 0.34,
κ = 4.01Wm−1K−1 and αT = 16.5× 10−6 ◦C−1. For simplicity, we consider only the case of plane strain thermo-
elasticity, where ν = ν and αT = αT .

For any real-valued function g : Γ −→ R, where Γ = Γ2 or Γ = ∂Ω, and any set of points
{
x(n)

}
n=1,NΓ

⊂ Γ, we

introduce the following relative root mean square (RMS ) error of g on Γ:

eΓ(g) =

√√√√ 1

NΓ

NΓ∑

n=1

[
g(num)

(
x(n)

)
− g

(
x(n)

)]2
/√√√√ 1

NΓ

NΓ∑

n=1

g
(
x(n)

)2
, (4.1a)
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where g(num)(x) denotes an approximate numerical value for g(x), x ∈ Γ. To investigate the local accuracy of the
numerical solution, one could also employ the following pointwise normalized error of g at x(n) ∈ Γ:

Eg(x
(n)) =

∣∣g(num)(x(n))− g(x(n))
∣∣

maxm=1,NΓ

∣∣g(x(m))
∣∣ , n = 1, NΓ . (4.1b)

Stability is numerically investigated by inverting the data (2.8), and (2.7) and (2.9), the latter two contaminated

with noise as f(1 + pu̺) and t̃(1 + pt̺), respectively, where pu and pt represent the percentage of noise and ̺ is a
random variable drawn from a uniform distribution in [-1, 1].

4.1. Example 1. (n=2-dimensions). We first consider an example in the unit disk (radius 1m) with exact solution

T (x) = 100 log |x− x0|, u(x) =
αT

2

(
1 + ν

1− ν

)
T (x)(x− x0), where x0 = (8, 1), (4.2)

in Ω = B(0; 1) and Γ1 = {(cosϑ, sinϑ), 0 ≤ ϑ ≤ απ}.

We investigate three cases when α ∈ {2/3, 1, 4/3} corresponding, in terms of the length of the boundary on
which the data (2.8) and (2.9) are supplemented, to under-determined, determined and over-determined data, i.e.
|Γ1|/|Γ2| ∈ {1/2, 1, 2}, respectively. However, if we take N1 = αN/2, then for all these values of α the condition
N ≤ (n + 1)N1 = 3N1 = 3αN/2 is always satisfied and the system of linear equations (3.6)-(3.8) has at least as
many equations as unknowns. We take the MFS parameters to be N = 84, N1 = αN/2 and the sources are placed
on an exterior disk of radius 1 + d, where d = 4. Other values of d can be chosen, but once d increases beyond a
threshold where an exterior singularity in the solution occurs, the numerical results may begin to deteriorate and
instability may appear. It is therefore recommended to start with a small value of d and increase it gradually until
a possible blow-up occurs. For more details regarding such issues in the MFS, see, e.g. [4, 6].

In Figures 1, 3 and 5 the numerical results for T |∂Ω, q|Γ2
and t|Γ2

are compared to the corresponding analytical
solutions for various percentages of noise pu = pt ∈ {1, 3, 5}%, when α = 4/3, α = 1 and α = 2/3, respectively,
obtained using the MFS and TRM with the choice of the regularization parameter based on the L-curve criterion
as illustrated in Figures 2, 4 and 6. We also report that the least squares numerical results with no regularization,
i.e. λ = 0 in (3.13) were highly oscillatory and unbounded giving rise to unstable solutions and are therefore not
presented.

First, from Figures 2, 4 and 6 one may observe that L-curves with well-defined corners occur in all cases investigated,
thus providing an appropriate approximate value for the regularization parameter λ in (3.13).

Secondly, Figures 1, 3 and 5 reveal that:

(i) The heat flux q|Γ2
is very accurately retrieved, almost independently of the percentage of noise pu = pt and

the values of α.
(ii) The temperature T |∂Ω is stable and becomes more accurate as the percentage of noise decreases. The predic-

tion is also not significantly dependent on α.
(iii) The traction components, especially t1, are significantly affected by the presence of noise and their accuracy

and stability depend considerably on the length over which the data (2.8) and (2.9) is prescribed.

4.2. Example 2. (n=3-dimensions). The second, three-dimensional, example is in the unit sphere (radius 1m)
with exact solution

T (x) =
T1

|x− x(1)|
+

T2

|x− x(2)|
, u(x) =

αT

2

(
1 + ν

1− ν

)[
T1

(x− x(1))

|x− x(1)|
+ T2

(x− x(2))

|x− x(2)|

]
, (4.3)

where T1 = 2000◦C, T2 = −500◦C, x(1) = (5, 5, 5), x(2) = (−2, 4, 4), and
Γ1 = {(cosϑ sinφ, sinϑ sinφ, cosφ), ϑ ∈ [0, 2π), 0 ≤ φ ≤ π/2}. For simplicity, we only consider the determined
situation in which |Γ1| = |Γ2|.
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Figure 1. Example 1: The analytical and numerical (a) temperature T
∣∣
∂Ω

(in ◦C), (b) heat flux

q
∣∣
Γ2

(in Wm−2), (c) traction t1
∣∣
Γ2

(in Nm−2), and (d) traction t2
∣∣
Γ2

(in Nm−2), when α = 4/3.
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Figure 2. Example 1: The L-curves for various percentages of noise pu = pt ∈ {1, 3, 5}%, when
α = 4/3.

The MFS parameters are taken to be N = 840, N1 = 420 and the sources are placed on an exterior sphere of
radius 1 + d, where d = 4. Figures 7 and 8 show the analytical and numerical solutions for the temperature on
∂Ω, the heat flux on Γ2 and the components t1 and t3 of the traction on Γ2, respectively, obtained using the MFS
and TRM with the choice of the regularization parameters given by the regularization parameters given by the
L-curves illustrated in Figure 11 for various percentages of noise. For brevity, the results for the component t2 are
not presented. From these figures it can be observed that there is very good agreement between the analytical and
numerical solutions. Better quantification of the errors can be seen from Figures 9 and 10 where the pointwise
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Figure 3. Example 1: The analytical and numerical (a) temperature T
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(in ◦C), (b) heat flux

q
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(in Wm−2), (c) traction t1
∣∣
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(in Nm−2), and (d) traction t2
∣∣
Γ2

(in Nm−2), when α = 1.
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Figure 4. Example 1: The L-curves for various percentages of noise pu = pt ∈ {1, 3, 5}%, when
α = 1.

normalized errors (4.1b) for ET |∂Ω, Eq|Γ2
, Et1 |Γ2

and Et3 |Γ2
, respectively, are illustrated. From these figures it can

be seen that the errors are comparable with the amount of noise with which the input data (2.7) and (2.9) are
contaminated. Also, the errors decrease as the amount of noise decreases. This shows that stable solutions have
been achieved.
We conclude this section with a brief discussion of the choice of the regularization parameters λ given by the corners
of the L-curves plotted in Figures 2, 4, 6 and 11 and, for more clarity, tabulated in Table 1 for various percentages
of noise pu = pt ∈ {1, 3, 5}% for Examples 1 and 2. From this table it can be observed that that the regularization



14 L. MARIN, A. KARAGEORGHIS, D. LESNIC, AND B. T. JOHANSSON

0.0 0.2 0.4 0.6 0.8 1.0

/2

180

190

200

210

220

230

T

Analytical

p  = p  = 1%

p  = p  = 3%

p  = p  = 5%

(a) T
∣

∣

∂Ω

0.4 0.6 0.8 1.0

/2

-40

-20

0

20

40

60

q

Analytical

p  = p  = 1%

p  = p  = 3%

p  = p  = 5%

(b) q
∣

∣

Γ2

0.4 0.6 0.8 1.0

/2

-0.02

-0.01

0.0

0.01

0.02

t1/1010

Analytical

p  = p  = 1%

p  = p  = 3%

p  = p  = 5%

(c) t1
∣

∣

Γ2

0.4 0.6 0.8 1.0

/2

-0.02

-0.01

0.0

0.01

0.02

0.03

t2/1010

Analytical

p  = p  = 1%

p  = p  = 3%

p  = p  = 5%

(d) t2
∣

∣

Γ2
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Figure 6. Example 1: The L-curves for various percentages of noise pu = pt ∈ {1, 3, 5}%, when
α = 2/3.

parameter λ > 0 depends on the amount of noise, as it should [3], and, as expected, it increases as the amount of
noise increases. Also, the larger the portion of the data provided the less ill-posed the problem, hence a smaller
regularization parameter is required.
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Figure 7. Example 2: The (a) analytical T (an)
∣∣
∂Ω

(in ◦C), (b) numerical temperature T (num)
∣∣
∂Ω

(in ◦C), (c) analytical q(an)
∣∣
Γ2

(in Wm−2), and (d) numerical heat flux q(num)
∣∣
Γ2

(in Wm−2), for

pu = pt =5% noise.

5. Conclusions

In this paper, a new inverse problem in static linear thermo-elasticity is investigated both theoretically, with the
uniqueness of the solution being established, and numerically. The problem is ill-posed since small errors in the
input data lead to large errors in the output solution. In order to restore stability, the TRM has been employed
with the choice of the regularization parameter based on the L-curve criterion. The numerical results obtained for
both two- and three-dimensional problems show that the present technique leads to accurate and stable numerical
solutions.
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Figure 8. Example 2: The (a) analytical t
(an)
1
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(in Nm−2), (b) numerical traction t
(num)
1
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(in Nm−2), (c) analytical t
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3
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(in Nm−2), and (d) numerical traction t
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3
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(in Nm−2), for

pu = pt =5% noise.

In conclusion, we believe that our contribution has enlarged the sphere of analysis of separate thermal and elastic
inverse problems to the joint thermo-elastic field. This extension can be further enlarged by coupling the thermo-
elastic and magnetic fields, see [11], but the numerical investigation of such inverse magneto-thermo-elastic problems
is deferred to future work.
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Figure 9. Example 2: The normalized errors (a), (c), and (e) ET
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Figure 11. Example 2: The L-curves obtained for various percentages of noise pu = pt ∈ {1, 3, 5}%.
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Example 1 1% 3% 5%
α = 4/3 2.74× 10−6 5.98× 10−6 1.04× 10−5

α = 1 3.42× 10−6 7.48× 10−6 1.05× 10−5

α = 2/3 3.42× 10−6 8.36× 10−6 1.31× 10−5

Example 2 1.25× 10−6 3.42× 10−6 5.98× 10−6

Table 1. Values of the regularization parameter λ given by the L-curves plotted in Figures 2, 4,
6 and 11 for various percentages of noise pu = pt ∈ {1, 3, 5}% for Examples 1 and 2.
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