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Abstract We show that Auslander algebras have a unique tilting and cotilting module which
is generated and cogenerated by a projective–injective; its endomorphism ring is called
the projective quotient algebra. For any representation-finite algebra, we use the projective
quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in
representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli,
Feigin and Reineke.
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1 Introduction

Starting from a finite-dimensional module M over a finite-dimensional associative algebra
A one can obtain an algebraic variety either by forming the so-called quiver Grassmannian
GrA

(M
d

)
parameterizing submodules ofM of dimensionvectord, or by taking the orbit closure

OM associated to M in the representation variety parameterizing all A-modules of the same
dimension vector as M . In the situation where A is the path algebra of a Dynkin quiver,
Cerulli Irelli, Feigin and Reineke constructed desingularizations of quiver Grassmannians
[7] and realized orbit closures as affine quotient varieties [8]. One would like to generalize
these constructions to other algebras, and Keller and Scherotzke [14] and Scherotzke [21]
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obtained some results in the cases when A is an iterated tilted algebra of Dynkin type or
a self-injective algebra of finite representation type. In this paper we generalize to the case
when A is an arbitrary finite-dimensional algebra of finite representation type. We again
construct desingularizations of quiver Grassmannians and realize orbit closures as affine
quotient varieties. For the latter, our construction unifies the work of Cerulli Irelli, Feigin and
Reineke with a construction of closures of conjugacy classes used by Kraft and Procesi [16]
to prove their normality. In addition, we construct desingularizations of orbit closures.

In order to study a Dynkin quiver Q, a certain algebra (denoted Λ̃Q or BQ) has been
introduced independently by Hernandez and Leclerc [12] and by Cerulli Irelli, Feigin and
Reineke. We generalize this to an algebra B = BA, which we call the projective quotient
algebra, associated to any finite-dimensional algebra A of finite representation type.We begin
by discussing this algebra. We write A-Mod for the category of (left) A-modules and A-mod
for the category of finite-dimensional modules. Let Q be the category whose objects are
surjective morphisms f : P → X in A-mod with P projective, and whose morphisms from
f : P → X to f ′ : P ′ → X ′ are given by pairs (t, s) ∈ HomA(P, P ′) ×HomA(X, X ′) such
that f ′t = s f . We can consider Q as a category of complexes with two terms, and define H
to be the corresponding homotopy category. Assuming that A has finite representation type,
the categoryH has only finitely many indecomposable objects, and we set G to be the direct
sum of them. Thus G is an additive generator forH. The projective quotient algebra for A is
defined to be B = EndH(G)op .

There is another characterization of the projective quotient algebra which shows how
natural it is. Recall that if A has finite representation type, itsAuslander algebra is EndA(E)op ,
where E is the direct sum of one copy of each indecomposable A-module. Auslander [1]
characterized the algebraswhich arise thisway as those of global dimension≤ 2 anddominant
dimension ≥ 2. In the same spirit we have the following. (All tilting and cotilting modules
are assumed to be classical, so with projective dimension ≤ 1 and injective dimension ≤ 1
respectively.)

Lemma 1.1 LetΓ be afinite-dimensional algebra and letC be the class ofmodules generated
and cogenerated by a projective–injective Γ -module. Then Γ is an Auslander algebra if and
only if it has global dimension ≤ 2 and C contains a tilting module. In this case there is a
unique basic tilting module T ∈ C and it is also a cotilting module.

Proof Suppose Γ has global dimension ≤ 2. If Y ∈ C then there are exact sequences
0 → X → I → Y → 0 and 0 → Y → P → Z → 0 with I injective and P projective
(in fact both projective–injective), and from the resulting long exact sequences it is easy to
see that proj.dim Y ≤ 1, inj.dim Y ≤ 1 and Ext1(Y, Y ) = 0. Thus any module Y in C is a
partial tilting and cotilting module, so has ≤ n non-isomorphic indecomposable summands,
where n is the number of simple Γ modules, and it has exactly n if and only if Y is tilting or
equivalently cotilting.

If Γ is an Auslander algebra, then the dominant dimension condition gives a map θ :
Q′ → Q′′ between projective–injective modules with ker θ ∼= Γ . Then Y = Q′ ⊕ Im θ ∈ C
is a tilting module.

Conversely, if there is a tilting module Y in C then Γ embeds in a direct sum of copies
of Y , so in a projective–injective module. Thus there is an exact sequence 0 → Γ → Q →
U → 0 with Q projective–injective. Then it is easy to see that proj.dimU ≤ 1 and applying
Hom(U,−) to the first exact sequence for Y above gives Ext1(U, Y ) = 0. Thus, since Y is a
cotilting module,U is cogenerated by Y , so it too embeds in a projective–injective. It follows
that Γ has dominant dimension ≥ 2, so is an Auslander algebra. 	
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Now let A be an algebra of finite representation type. By the lemma, its Auslander algebra
Γ has a uniquely determined basic tilting and cotilting module T which is generated and
cogenerated by a projective–injective module.

Theorem 1.2 The projective quotient algebra B for A is isomorphic to the algebra
EndΓ (T )op.

This theorem and the next are proved in Sect. 5. For simplicity we suppose that A is basic.
Thus A is a direct summand of E , and also A → 0 is a direct summand of G in the category
H, and we denote by e ∈ B the projection onto this summand. Then eBe ∼= EndH(A →
0)op ∼= A, and we treat this as an identification. There is a recollement

B/BeB-Mod i B-Mod
p

q

e A-Mod.
r

�

where e also denotes the functor sending a B-module M to the A-module eM , and there is
an associated intermediate extension functor c. We define D(−) = HomK (−, K ).

Theorem 1.3 The intermediate extension functor c : A-Mod → B-Mod is given by

c(X) = (DT ) ⊗Γ HomA(E, X).

It satisfies Ext1B(c(X), c(Y )) = 0, proj.dim c(X) ≤ 1, inj.dim c(X) ≤ 1 for any A-modules
X, Y .

We use this result together with standard properties of intermediate extension functors to
obtain our geometric results. Henceforth let K be an algebraically closed field. Still A is a
basic algebra of finite representation type, and let e1, . . . , en be a complete set of primitive
orthogonal idempotents in A. The dimension vector of an A-module N is d = (dim ei N ) ∈
N
n
0. Let e1, . . . , em be a complete set of orthogonal idempotents in B, with the first n ≤ m

being the corresponding idempotents for A. Dimension vectors for B are given by pairs (d, r)
with d ∈ N

n
0 and r ∈ N

m−n
0 .

Let M be an A-module. Recall that GrA
(M
d

)
is a projective variety, possibly with singu-

larities. If N is an A-module of dimension d , then there is a map of varieties from the set of
injective maps in HomA(N , M) to the Grassmannian, whose image is the set of submodules
isomorphic to N . We denote it S[N ]; it is locally closed and if non-empty it is irreducible.
Note that GrA

(M
d

)
may have several irreducible components, but using that A has finite rep-

resentation type, they are of the form S[Ni ] for some A-modules N1, . . . , N�. We consider
S[c(Ni )] ⊆ GrB

(c(M)
d,r i

)
, where (d, r i ) is the dimension vector of c(Ni ). A desingularization

of a variety X is a birational projective morphism from a smooth variety to X . Our first
geometric application is the following.

Theorem 1.4 The functor e induces a desingularization

�⊔

i=1

S[c(Ni )] → GrA

(
M

d

)
.

Modules of any given dimension vector d ∈ N
n
0 are parameterized by a variety RA(d) and

the groupGld acts with the orbits being the isomorphism classes. We write OM for the orbit
corresponding to a module M . Our second geometric application is as follows.
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Theorem 1.5 If K has characteristic zero and M is an A-module, thenOM is isomorphic to
the affine quotient variety RB(d, r)//Glr where (d, r) is the dimension vector of c(M), and
also to Oc(M)//Glr .

Associated to the recollement there is a stability notion for B-modules. We denote by
RB(d, r)s the open subset of stable modules in RB(d, r) and by RB(d, r)s/Glr the cor-
responding geometric quotient (the GIT moduli space of stable B-module). Using this we
obtain another desingularization.

Theorem 1.6 If K has characteristic zero and M is an A-module, then the natural map
(
Oc(M) ∩ RB(d, r)s

)
/Glr → OM

is a desingularization.

2 Recollements

Recall (see [3]) that a recollement of abelian categories is a diagram

A i B
p

q

e C
r

�

consisting of three abelian categories and six functors satisfying the following conditions.

(1) (q, i), (i, p), (�, e), (e, r) are adjoint pairs of functors.
(2) The natural transformations ρ : er → idC, λ : idC → e� are isomorphisms.
(3) The natural transformations P : idA → pi and Q : qi → idA are isomorphisms.
(4) The functor i is an embedding onto the full subcategory of B with objects b such that

eb = 0.

The condition (1) implies that i and e are exact, and the conditions (2) and (3) are equivalent
to the fully faithfulness of �, r and i .

2.1 The intermediate extension functor

Associated to a recollement there is a functor c : C → B called the intermediate extension
functor given by

c(M) = Im(�(M)
γM−→ r(M))

where γM is the adjoint of the inverse of the natural map ρM : er(M) → M , or equivalently
the adjoint of the inverse of the natural map λM : M → e�(M). For N in B set e(N ) := M .
Then there are two adjoint maps αN : �(M) → N , βN : N → r(M) and the following
diagram commutes

�(M)

γM

αN
N

βN

r(M)

The following lemma summarizes results in [17, §4] and [10, Proposition 4.4].
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Lemma 2.1 (1) ec(M) ∼= M naturally in M.
(2) Let N be in B with e(N ) ∼= M. Then c(M) is a subquotient of N . More precisely, from

the above diagram we get short exact sequences

0 → kerβN → N → ImβN → 0

0 → c(M)
j−→ ImβN → coker( j) → 0

with e(kerβN ) = 0 = e(coker( j)).
(3) Let N be in B with e(N ) ∼= M. Then, N ∼= c(M) if and only if N has no non-zero

subobjects or quotients in A.
(4) The functor c preserves epimorphisms and monomorphisms.
(5) If B is a category with sums and products in which the natural map

⊕

α

Nα →
∏

α

Nα

is monic for all indexed sets of objects {Nα}, then c commutes with direct sums.
(6) The functor c maps simples in C to simples in B. There is a bijection between sets of

isomorphisms classes of simples

{simples in A} 
 {simples in C} → {simples in B}
given by sending a simple N in A to i(N ) and a simple M in C to c(M).

(7) There are short exact sequences of natural transformations

0 → i p� → � → c → 0, 0 → c → r → iqr → 0

The next lemma is essentially in [10].

Lemma 2.2 The application of the functor e on the following morphisms spaces

(1) HomB(c(M), F) → HomC(ec(M), e(F)) ∼= HomC(M, e(F)) and
(2) HomB(F, c(M)) → HomC(e(F), ec(M)) ∼= HomC(e(F), M)

are injective. In particular, the functor c is fully faithful and preserves indecomposable
objects.

Proof Since c(M) = Im(�(M) → r(M)) we have a factorization �(M)
pM−−→ c(M)

iM−→
r(M) with pM epimorphism and iM monomorphism. Now, we just need to see that we have
a commutative diagram

HomB(c(M), F)
e

HomC(ec(M), e(F)) HomC(M, e(F))

HomB(c(M), F)
−◦pM

HomB(�(M), F)
e

HomC(M, e(F))

where the e in the lower row is the adjunction isomorphism. Since pM is an epimorphism, the
lower row is an injective linear map. The diagram commutes since e(pM ) is the identity. Ana-

loguously, in (2) the morphism identifies with HomB(F, c(M))
iM◦−−−−→ HomB(F, r(M))

e−→
HomC(M, e(F)) where e stands for the adjunction isomorphism. Since iM is a monomor-
phism, the lower line is an injective linear map. For the fully faithfulness, the following map
is the identity

HomC(M, N ) → HomB(c(M), c(N )) → HomC(ec(M), ec(N )) ∼= HomC(M, N ),
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372 W. Crawley-Boevey, J. Sauter

therefore HomC(M, N ) → HomB(c(M), c(N )) is injective and the second map
HomB(c(M), c(N )) → HomC(M, N ) is surjective. Now, the second map is injective by
the previous part of the proof, therefore the second map is an isomorphism. It follows that
also HomC(M, N ) → HomB(c(M), c(N )) is an isomorphism. Since c is fully faithful, it
preserves indecomposables. 	

2.2 Stable and costable objects

Associated to a recollement there are the notions of stable and costable objects (see [13,
§2.6, §4.8] for the case of Kan extensions). We consider a recollement as above with inter-
mediate extension functor c. We characterize stable and costable objects in the following two
lemmas. For an additive functor f : S → T we denote by ker f the full subcategory in S
whose objects are send to zero under f .

Lemma/Definition 2.3 We say that an object F in the middle category B is stable (or e-
stable) if one of the following equivalent conditions is fulfilled

(1) HomB(G, F) = 0 for every object G with e(G) = 0.
(2) The natural map F → re(F) is a monomorphism.
(3) Every non-zero subobject F ′ ⊂ F fulfills e(F ′) �= 0.
(4) F ∈ kerp.

From (3) it follows that every subobject of a stable object is stable. Furthermore, if F is
stable, then there is a (natural) monomorphism ce(F) → F (compare Lemma 2.1 part (2)).

Proof Assume F fulfills (1). Let F ′ ⊂ F be a non-zero subobject (if it exists). By (1) it
follows that e(F ′) �= 0, so (3) is fulfilled. Assume F fulfills (3). Let F ′ ⊂ F be the kernel
of the map F → re(F). Since e is exact, we get e(F ′) = 0, so by (3) it follows F ′ = 0.
Therefore, (2) is fulfilled. Assume F fulfills (2). Let G be an object with e(G) = 0. Using
(2) we get a monomorphism

0 → HomB(G, F) → HomB(G, re(F))

and by the adjointness HomB(G, re(F)) = HomC(e(G), e(F)) = 0. Therefore
HomB(G, F) = 0 and (1) is fulfilled. Now, (4) implies (2) by Franjou and Pirashvili [10,
Proposition 4.9]. On the other hand, from loc. cit. Proposition 4.2 we know that the kernel
of F → re(F) is precisely i p(F). So, if F → re(F) is a monomorphism, then i p(F) = 0
and since i is fully faithful, it follows p(F) = 0. 	

Lemma/Definition 2.4 We say that an object H in the middle category B is costable (or
e-costable) if one of the following equivalent conditions is fulfilled

(1) HomB(H,G) = 0 for every G with e(G) = 0.
(2) The natural map �e(H) → H is an epimorphism.
(3) Every non-zero quotient object H � H ′ fulfills e(H ′) �= 0.
(4) H ∈ ker q.

From (3) it follows that every quotient of a costable object is costable again. Furthermore,
if H is costable, then there is a (natural) epimorphism H → ce(H) (compare Lemma 2.1
part (2)).

Proof Assume H fulfills (1). Let H ′ be a non-zero quotient of H . By (1) we get e(H ′) �= 0
and (3) is fulfilled. Assume H fulfills (3). Let H ′ be the cokernel of the map �e(H) → H .
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Since e is exact, we get e(H ′) = 0, so by (3) it follows H ′ = 0. Assume H fulfills (2). Let
G be an object with e(G) = 0. Using (2) we get a monomorphism

0 → HomB(H,G) → HomB(�e(H),G)

and by the adjointness HomB(�e(H),G) = HomC(e(H), e(G)) = 0 and therefore
HomB(H,G) = 0, so (1) is fulfilled. Now, (4) implies (2) by Franjou and Pirashvili [10,
Proposition 4.9]. On the other hand, from loc. cit. Proposition 4.2 we know that the cokernel
of �e(H) → H is precisely iq(H). So, if it is an epimorphism, then iq(H) = 0 and since i
is fully faithful, it follows q(H) = 0. 	

Definition 2.5 We say F is bistable if it is stable and costable.

It follows directly from Lemma 2.1 that F is bistable if and only if F ∼= ce(F). Now,
every recollement of abelian categories with middle term B is determined by its associated
TTF-triple, which is a triple (X ,Y,Z) of subcategories of B such that (X ,Y) and (Y,Z)

are torsion pairs, compare e.g. [19]. For our given recollement, the TTF-triple is

(ker q, ker e, kerp) = (costables, ker e, stables).

2.3 Functor categories

Weare interested inKrull–Schmidt categories, bywhichwemean a small additive K -category
R with finite-dimensional Hom sets and split idempotents. We denote by R̂ the category
of K -linear contravariant functors R → K -Mod. If X is an object in R, then there is a
representable functor HomR(−, X), and by Yoneda’s Lemma, for any functor F ∈ R̂ one
has HomR̂(HomR(−, X), F) ∼= F(X). It follows that representable functors are projective
objects in R̂. Moreover projective objects which are isomorphic to representable functors
are said to be finitely generated. The functor DHomR(X,−) is an injective object of R̂, and
injective objects of this form are said to be finitely cogenerated.

Any K -linear functor f : S → RofKrull–Schmidt categories induces a restriction functor
R̂ → Ŝ. Using tensor products over categories, and the usual hom-tensor adjointness, one
obtains left and right adjoints �, r : Ŝ → R̂ given by

�(F)(X) = HomR(X, f (−)) ⊗S F, r(F)(X) = HomŜ(HomR( f (−), X), F)

for F ∈ Ŝ and X ∈ R.
Recall that if S is a full Krull–Schmidt subcategory ofR, thenR/S denotes the quotient

category whose objects are the same as inR and with morphisms given by the quotient vector
space

HomR/S(X, X ′) := HomR(X, X ′)/IS(X, X ′)

where IS(X, X ′) is the vector subspace with elements the morphisms X → X ′ which factor
through an object in S. In this situation we have a recollement of the following form.

Lemma 2.6 For R a Krull–Schmidt category and S a full additive subcategory of R, there
is a recollement

R̂/S i R̂
p

q

e Ŝ.

r

�

where e is the restriction functor given by the inclusion S ⊂ R and i is given by composition
with the natural functor R → R/S.
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374 W. Crawley-Boevey, J. Sauter

3 The categoriesQ and H and two auxiliary recollements

Let A be a basic finite-dimensional K -algebra and let e1, . . . , en be a complete set of primitive
orthogonal idempotents in A. Since A is basic, the modules Pi = Aei are a complete set of
non-isomorphic indecomposable projective A-modules and their tops Si are a complete set
of non-isomorphic simple A-modules.

3.1 The category Q of quotients of projectives and a first auxiliary recollement

Let Q be the category defined as in the introduction. Let E be the full subcategory of Q
consisting of the objects 1 : P → P , and let P be the full subcategory ofQ consisting of the
objects 0 : P → 0. The following is clear.

Lemma 3.1 The category Q is Krull–Schmidt and its indecomposable objects are of the
following three types up to isomorphism

(1) a projective cover fU : PU → U of a non-projective indecomposable A-module U,
(2) indecomposables in E , so of the form 1 : Pi → Pi for 1 ≤ i ≤ n,
(3) indecomposables in P , so of the form 0 : Pi → 0 for 1 ≤ i ≤ n.

Remark 3.2 Clearly Q is a full subcategory of the category T whose objects are the mor-
phisms f : Y → X in A-mod and whose morphisms are given by commutative diagrams.
Now T is abelian, indeed it is equivalent to the category of finite-dimensional modules for
the algebra of 2 × 2 upper triangular matrices with entries in A. It is not difficult to see
that Q is functorially finite and extension-closed in T . Thus it is an exact category and, by
[2, Theorem 2.4], the category Q has Auslander–Reiten sequences. It is easy to see that the
indecomposable Ext-projectives are the objects of the form 1 : Pi → Pi and 0 : Pi → 0, and
the indecomposable Ext-injectives are the objects of the form f Ii : PIi → Ii and 0 : Pi → 0,
where Ii is the injective envelope of Si .

Considering P as a full subcategory of Q, the first auxiliary recollement we consider is

Q̂/P i ′ Q̂
p′

q ′

e′ A-Mod (∼= P̂).

r ′

�′

The functor e′ is given by e′(F) = F(A → 0) with its induced A-module structure.

Theorem 3.3 The adjoints �′, r ′ : A-Mod→ Q̂ of e′ are given by

�′(M)( f : P → X) = HomA(P, M)

r ′(M)( f : P → X) = HomA(ker f, M)

and the intermediate extension functor c′ : A-Mod→ Q̂ is given by

c′(M)( f : P → X) = coker(HomA(X, M) → HomA(P, M)).

Proof For the moment let �′, r ′ and c′ be defined by the formulas in the statement of the
theorem. Since P is finitely generated and projective, �′ is right exact and commutes with
direct sums. Thus, to show it agrees with the left adjoint, it suffices to check this on the
free module A, that is, HomQ(�′(A), F) ∼= HomA(A, e′(F)). This follows from Yoneda’s
Lemma, since we have �′(A) ∼= HomQ(−, (A → 0)).
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On quiver Grassmannians and orbit closures for... 375

Since e′ is right exact and commutes with direct sums, by considering a projective pre-
sentation of F ∈ Q̂ by direct sums of representable functors, in order to prove that r ′ is
right adjoint to e′ it suffices to prove that HomQ̂(R, r ′(M)) ∼= HomA(e′(R), M) for any
representable functor R = HomQ(−, ( f : P → X)). This is clear since on the left hand side
Yoneda’s Lemma gives

HomQ̂(R, r ′(M)) ∼= r ′(M)( f : P → X) = HomA(ker f, M)

and on the right hand side we have e′(R) = HomQ̂((A → 0), ( f : P → X)) ∼= ker f .
Now the isomorphism between Im(HomA(P, M) → HomA(ker f, M)) and

coker(HomA(X, M) → HomA(P, M)) gives the result for c′. 	

3.2 The homotopy category H and a second auxiliary recollement

We define H = Q/E . It is easy to see that a morphism (θ, φ) from the object f : P → X
to the object f ′ : P ′ → X ′ in Q factors through E if and only if there is a map h : X → P ′
with θ = h f and φ = f ′h. Thus, if one considers Q as a category of complexes with two
terms, thenH is the corresponding homotopy category. The categoryH is Krull–Schmidt and
up to isomorphism its indecomposable objects are those of types (1) and (3) in Lemma 3.1.
Associated to the quotient H = Q/E there is a second auxiliary recollement

Ĥ i0 Q̂
p0

q0

e0 A-Mod (∼= Ê).

r0

�0

Here the equivalence between Ê and A-Mod is given by evaluating a functor in Ê on the
object (1 : A → A).

Lemma 3.4 Arepresentable functorHomQ(−, (P → X)) is sent by the functor q0 : Q̂ → Ĥ
to the representable functor HomH(−, (P → X)).

Proof For G ∈ Ĥ we have

HomĤ(q0(HomQ(−, (P → X))),G) ∼= HomQ̂(HomQ(−, (P → X)), i0(G))

∼= i0(G)(P → X) ∼= G(P → X) ∼= HomĤ(HomH(−, (P → X)),G)

giving the claim. 	

Lemma 3.5 If (θ, φ) is a morphism inQ and θ is a split monomorphism, then (θ, φ) induces
a monomorphism in H.

Proof Say (θ, φ) is a morphism from f : P → X to f ′ : P ′ → X ′, and let r : P ′ → P be
a retraction for θ , so rθ = 1P . Take a morphism in H from an object f ′′ : P ′′ → X ′′ to
f : P → X , and let it be represented by a morphism (θ ′, φ′) in Q. If the composition with
(θ, φ) is zero in H, then in Q the composition (θθ ′, φφ′) factors through an object in E , say
as (α, β) from f ′′ : P ′′ → X ′′ to 1 : Q → Q composed with (α′, β ′) from 1 : Q → Q to
f ′ : P ′ → X ′. Then (θ ′, rα′β) defines a map from f : P ′′ → X ′′ to 1 : P → P , and its
composition with the map (1, f ) from 1 : P → P to f : P → X is equal to (θ ′, f rα′β). But
(θ ′, φ′) is also amorphism from f ′′ : P ′′ → X ′′ to f : P → X , and since these twomaps have
the same first component, and f ′′ is surjective, they must be equal, (θ ′, f rα′β) = (θ ′, φ′).
This shows that (θ ′, φ′) is the zero map in H, as required. 	


123



376 W. Crawley-Boevey, J. Sauter

Lemma 3.6 If G is a functor in Ĥand i0(G) is finitely presented in Q̂, thenproj.dimQ̂i0(G) ≤
2. Also G is finitely presented in Ĥ and proj.dimĤG ≤ 2.

Proof By assumption there is a projective presentation

HomQ(−, ( f ′ : P ′ → X ′)) → HomQ(−, ( f ′′ : P ′′ → X ′′)) → i0(G) → 0

for some morphism (θ ′, φ′) inQ from the object f ′ : P ′ → X ′ to the object f ′′ : P ′′ → X ′′.
Now the functor i0(G) vanishes on every object of E , so in particular on 1 : P ′′ → P ′′, so the
map from HomQ((1 : P ′′ → P ′′), ( f ′ : P ′ → X ′)) to HomQ((1 : P ′′ → P ′′), ( f ′′ : P ′′ →
X ′′)) is onto. Thus (1, f ′′) lifts to a map from 1 : P ′′ → P ′′ to f ′ : P ′ → X ′. In particular
θ ′ is a split epimorphism. Thus φ′ is also an epimorphism, and we obtain the diagram

0 −−−−→ P
θ−−−−→ P ′ θ ′−−−−→ P ′′ −−−−→ 0

f

⏐
⏐
� f ′

⏐
⏐
� f ′′

⏐
⏐
�

0 −−−−→ X
φ−−−−→ X ′ φ′

−−−−→ X ′′ −−−−→ 0

where P = ker θ ′ and X = ker φ′. Now themap f : P → X need not be onto, but factorizing
it as f0 : P → Im( f ) followed by the inclusion, we get an exact sequence

0 → HomQ(−, ( f0 : P → Im( f ))) → HomQ(−, ( f ′ : P ′ → X ′))
→ HomQ(−, ( f ′′ : P ′′ → X ′′)) → i0(G) → 0.

Applying q0 one obtains a sequence of functors

0 → HomH(−, ( f0 : P → Im( f ))) → HomH(−, ( f ′ : P ′ → X ′))
→ HomH(−, ( f ′′ : P ′′ → X ′′)) → G → 0

in Ĥ. Since q0 is a left adjoint, this sequence is right exact. To show it is exact at the
term HomH(−, ( f ′ : P ′ → X ′)), we consider a morphism (α, β) from g : Q → M to
f ′ : P ′ → X ′. which is sent to zero in HomH((g : Q → M), ( f ′′ : P ′′ → X ′′)). Thus there
is a map h : M → P ′′ with hg = θ ′α and f ′′h = φ′β. Let s be a section for θ ′ and r
a retraction for θ with 1P ′ = θr + sθ ′. Then α − shg = θα′ for some α′ : Q → P and
β − f ′sh = φβ ′ for some β ′ : M → X , which actually has image contained in Im( f ) since

φβ ′g = βg − f ′shg = f ′α − f ′sθ ′α = f ′θrg = φ f rg

and since φ is a monomorphism and g is an epimorphism, we have β ′ = f r . Then, up
to a morphism factoring through a projective, (α, β) comes from the map (α′, β ′) from
g : Q → M to f0 : P → Im( f ).

Now, because the map from P to P ′ is a split monomorphism, the map from f0 : P →
Im( f ) to f ′ : P ′ → X ′ induces a monomorphism in H, and it follows that the sequence is
exact on the left, too. 	


4 The main recollement

Observe that there are no non-zero maps from an object 0 : P → 0 in P to an object
1 : P ′ → P ′ in E , so the natural functor from P to H = Q/E is fully faithful, and hence P
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can be considered as a full subcategory of H. Again, identifying P̂ ∼= A-Mod, we have a
recollement

Ĥ/P i Ĥ
p

q

e A-Mod (∼= P̂).

r

�

Clearly e = e′i0. We denote by c : A-Mod → Ĥ the corresponding intermediate extension
functor.

4.1 Projective dimension

Lemma 4.1 For A-modules M, we have a natural isomorphism r ′(M) ∼= i0r(M) and a
natural epimorphism �′(M) → i0�(M).

Proof For M an A-module, the functor r ′(M) vanishes on objects in E (this follows from
the explicit description of r ′ given in Theorem 3.3), so it is equal to i0r(M) for some functor
r : A-Mod → Ĥ. Now for G ∈ Ĥ we have

HomĤ(G, r(M)) = HomQ̂(i0(G), i0r(M)) = HomQ̂(i0(G), r ′(M))

= HomA(e′i0(G), M) = HomA(e(G), M),

so this functor r is the adjoint of e.
Now for M in A-Mod and F ∈ Ĥ, using that e = e′i0 we have

HomQ̂(�′(M), i0(F)) = HomA(M, e(F)) = HomĤ(�(M), F)

= HomQ̂(i0�(M), i0(F)).

The identity map on the right hand side for F = �(M) gives a natural morphism �′(M) →
i0�(M).

Now for any G ∈ Q̂, by Franjou and Pirashvili [10, Proposition 4.2] the natural map
i0 p0(G) → G is a monomorphism. Since e′ is exact and e = e′i0, we deduce that for any
A-module M , the map

HomA(M, ep0(G)) → HomA(M, e′(G))

is a monomorphism. By adjointness we can rewrite this as

HomQ̂(i0�(M),G) ↪→ HomQ̂(�′(M),G)

giving the result. 	

Lemma 4.2 We have c′ = i0c, so that c is given by the same formula as c′, that is,

c(M)( f : P → X) = coker (HomA(X, M) → HomA(P, M)) .

Proof For an A-module M , recall that c′(M) is the image of the map from �′(M) to r ′(M).
Now, using that i0 is exact, this factors as �′(M) � i0�(M) � i0c(M) ↪→ i0r(M) = r ′(M).

	

Lemma 4.3 Let M be a finite-dimensional left A-module and let p : Q → M be a projective
cover. Then c(M) has a projective resolution

0 → HomH(−, (p : Q → M)) → HomH(−, (0 : Q → 0)) → c(M) → 0

in Ĥ. In particular c(M) is finitely presented and proj.dimĤ(c(M)) ≤ 1.
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Proof Let f : P → X be an object inQ. By diagram chasing one obtains an exact sequence

0 → ker (HomA(P, Q) ⊕ HomA(X, M) → HomA(P, M))

→ HomA(P, Q) → c′(M)(P → X) → 0.

This gives an exact sequence

0 → HomQ(−, (Q → M)) → HomQ(−, (Q → 0)) → c′(M) → 0.

Applying q0 and using that q0 preserves representables by Lemma 3.4

0 → HomH(−, (Q → M)) → HomH(−, (Q → 0)) → c(M) → 0.

It is right exact since q0 is a left adjoint, and it is exact on the left by Lemma 3.5 about
monomorphisms in H. 	

4.2 Rigidity

In general, we do not know when intermediate extension functors map all modules to rigid
modules but in our situation, we can prove this statement, generalizing [7, Theorem 5.6].

Theorem 4.4 We have Ext1Ĥ(c(M), c(N )) = 0 for finite-dimensional left A-modules M, N.

Proof Applying HomĤ(−, c(N )) to the projective resolution for c(M) gives an exact
sequence

0 → HomĤ(c(M), c(N )) → HomĤ(HomH(−, Q → 0), c(N ))

→ HomĤ(HomH(−, Q → M), c(N )) → Ext1Ĥ(c(M), c(N )) → 0.

Using the fully faithfulness of c we can write it as

0 → HomA(M, N ) → c(N )(Q → 0) → c(N )(Q → M)

→ Ext1Ĥ(c(M), c(N )) → 0

and by the definition of c(N ) the middle map is

HomA(Q, N ) → coker(HomA(M, N ) → HomA(Q, N ))

which is tautologically surjective, giving the result. 	

We observe the following special property that c maps injectives to injectives and projec-

tives to projectives. More precisely, one has

Lemma 4.5 Let M be an A-module.

(1) If M is injective, then c(M) = r(M) is injective in Ĥ.
(2) If M is projective, then c(M) = �(M) is projective in Ĥ.

Proof (1) If M is injective, then

c(M)( f : P → X) = coker (HomA(X, M) → HomA(P, M))

∼= HomA(ker f, M) ∼= r(M)( f : P → X),

so c(M) ∼= r(M). Now the functor HomĤ(−, r(M)) ∼= HomA(e(−), M) is exact since e is
exact and M is injective, so r(M) is injective.

(2) It suffices to prove this for M a finitely generated projective module (or even for
M = A). In this case it follows from the projective resolution of c(M) since one can take
Q = M and the first term is zero. 	
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We remark that c′ sends injectives to injectives, but it need not send projectives to projec-
tives.

4.3 Injective dimension

The Nakayama functors ν and ν− for A-modules are defined by ν(M) = DHomA(M, A)

and ν−(M) = HomA(DM, A). They define inverse equivalences between the category of
finite-dimensional projective A-modules and the category of finite-dimensional injective A-
modules. For any modules X and Y there is a functorially defined map

ΘX,Y : D HomA(X, Y ) → HomA(Y, ν(X))

which is an isomorphism if X is a finite-dimensional projective module.

Lemma 4.6 The following triangle is commutative

DHomA(ν(P), ν(P ′)) Dν

DΘP ′,ν(P)

DHomA(P, P ′)

ΘP,P ′

HomA(P ′, ν(P))

for any finite-dimensional projective A-modules P and P ′.

Proof One can reduce to the case when P = P ′ = A. 	

Lemma 4.7 If M is a finite dimensional left A-module, then c(M) is finitely copresented in
Ĥ and we have inj.dimĤ(c(M)) ≤ 1.

Proof Choose a minimal injective copresentation 0 → M → I → J . Applying ν− and
using the definition of the Auslander–Reiten translate τ− we get an exact sequence

0 → ν−M → ν− I → ν− J → τ−(M) → 0.

This gives an object ν− J → τ−M in Q and a morphism from ν− I → 0 to ν− J → τ−M .
For an object f : P → X in Q, consider the sequence

0 → HomH((ν− J → τ−M), (P → X))

→ HomH((ν− I → 0), (P → X))
h−→ Hom(M, νP)

where h sends a map in the left hand space, which can be identified with Hom(ν− I, ker f ) to
the map obtained by first composing with the inclusion ker f → P to get a map ν− I → P ,
then applying ν to get a map I → νP , and then composing with the inclusion M → I
to get a map M → νP , as required. The sequence is exact in the middle because a map
ν− I → ker f is sent to 0 by h if and only if the map I → νP factors through the map I → J
(using that J is injective), so if and only if the map ν− I → P factors through ν− I → ν− J ,
which is the condition for the map from ν− I → 0 to P → X to come from a map from
ν− J → τ−M to P → X . The sequence is easily seen to be exact on the left. Now the dual
of h is the composition along the top of the diagram

DHom(M, νP)

DΘP,M

DHom(I, νP)

DΘP,I

DHom(ν− I, P)

Θν− I,P

DHom(ν− I, ker f )

Θν− I,ker f

Hom(P, M) Hom(P, I ) Hom(P, I ) Hom(ker f, I ).
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The diagram commutes—the middle square commutes by dualizing the triangle in the pre-
vious lemma. The composition along the bottom can also be factorized as Hom(P, M) →
Hom(ker f, M) ↪→ Hom(ker f, I ) so the image of the dual of h is isomorphic to the image
of the map Hom(P, M) → Hom(ker f, M), which is c(M)(P → X). Thus, dualizing the
original sequence, we get an exact sequence

0 → c(M) → DHomH((ν− I → 0),−) → DHomH((ν− J → τ−M),−) → 0,

giving the result. 	

4.4 Stable and costable functors

We want to characterize stable and costable objects for our main recollement.

Lemma 4.8 Let F in Ĥ. The following are equivalent.

(1) F is stable.
(2) There is an injective A-module I such that F is a subfunctor of c(I ).
(3) There is an A-module M such that F is a subfunctor of c(M).

Proof (3) implies (1) because submodules of stable modules are stable. Assume F fulfills
(1). Let I be an injective hull of e(F). We apply the left exact functor r and get a monomor-
phism re(F) → r(I ). By Lemma 4.5 we have r(I ) = c(I ) and by Lemma 2.3, we have
a monomorphism F → re(F). Composition gives a monomorphism F → c(I ) and (2) is
fulfilled. Now, (2) implies clearly (3). 	

Lemma 4.9 Let H in Ĥ. The following are equivalent.

(1) H is costable.
(2) There is a projective A-module P such that H is a quotient of c(P).
(3) There is a A-module M such that H is a quotient of c(M).

We remark the following.

Lemma 4.10 If 0 → F → c(M) → H → 0 is a short exact sequence in Ĥ, with M
an A-module, then F is stable, c(M) is bistable and H is costable. If inj.dim F ≤ 2 or
proj.dim H ≤ 2, then Ext2Ĥ(F, F) = 0 = Ext2Ĥ(H, H).

Proof The first part is straightforward. Apply HomĤ(−, F) to the sequence to get a long
exact sequence

· · · → Ext2Ĥ(c(M), F) → Ext2Ĥ(F, F) → Ext3Ĥ(H, F) → · · · .

Now Ext2Ĥ(c(M), F) = 0 by Theorem 4.4, and Ext3Ĥ(H, F) = 0 by the hypothesis on

injective or projective dimension, so Ext2(F, F) = 0. Similarly, to show that Ext2Ĥ(H, H) =
0, apply HomĤ(H,−) and use the analogue argument. 	


5 The projective quotient algebra

Let A be a basic finite-dimensional algebra as in Sects. 3 and 4. We now suppose that A has
finite representation type. In this case H has only finitely many indecomposable objects up
to isomorphism, those of the form PU → U , where U is a non-projective indecomposable
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A-module and PU is a projective cover, and those of the form Pi → 0. We denote by G
the direct sum of all these indecomposable objects and define B = BA = EndH(G)op . It is
a finite-dimensional basic algebra, and H is equivalent to the category of finitely generated
projective B-modules. Now the object A → 0 in H is the direct sum of the objects Pi → 0,
so it is a summand of G, and e ∈ B is the projection of G onto this summand. Then
eBe ∼= EndH(A → 0)op ∼= EndA(A)op ∼= A. There is an equivalence of categories between
Ĥ and B-Mod, by evaluating functors atG, and the functor e in the main recollement given at
the start of Sect. 4 is identified with the functor B-Mod → A-Mod, M �→ eM . Therefore the
main recollement can be identified with the recollement of B-Mod given by the idempotent
e, see for example [17, §2]. This is the recollement discussed in the introduction to the paper
after Theorem 1.2.

Recall that E is the direct sumof all indecomposable A-modules and theAuslander algebra
is Γ = EndA(E)op . We defineC = c(E). Since c is fully faithful, we have EndB(C)op ∼= Γ .

Lemma 5.1 The projective quotient algebra B has global dimension at most 2 and the
module C is a tilting and cotilting module.

Proof ByLemma3.6, anyfinite-dimensional B-module has projective dimension≤ 2, giving
the global dimension claim. The number of indecomposable summands of C is equal to the
number of indecomposable A-modules, which is also the number of indecompsable objects
in H, so the number of simple B-modules. Thus C is a tilting and cotilting module by
Lemmas 4.3, 4.7 and Theorem 4.4. 	

Theorem 5.2 The intermediate extension functor c : A-Mod → B-Mod is given by c(X) =
C ⊗Γ HomA(E, X). It satisfies Ext1B(c(X), c(Y )) = 0 for any A-modules X, Y .

Proof The assignment HomA(E, X) → HomB(c(E), c(X)) induces a map hX : c(E) ⊗Γ

HomA(E, X) → c(X) which is functorial in X . Now hE is an isomorphism, both sides
commute with direct sums, and any A-module is a direct sum of summands of E , so hX is
an isomorphism for all X . The assertion about extensions follows from Theorem 4.4 since
every A-module is a direct sum of finite-dimensional A-modules. 	


The next lemma follows from Lemmas 4.8 and 4.9.

Lemma 5.3 The stable B-modules are those which are cogenerated by C, and the costable
modules are those generated by C.

We now recall some results from tilting theory (which apply to the projective quotient
algebra). For the moment let B be an arbitrary finite dimensional algebra. A tilting and
cotilting B-module C induces two torsion pairs on B-mod

(T = Gen(C),F = ker HomB(C,−)) , (X = ker HomB(−,C),Y = Cogen(C)) ,

the first from the tilting property, the second from the cotilting property. BecauseC is cotilting
all injective modules are objects in Gen(C) and because C is tilting all projective objects are
in Cogen(C). We set Γ = EndB(C)op , then DC is a tilting and cotilting (left) Γ -module and
by the Brenner-Butler theorem the two torsion pairs in B-mod in the order above are mapped
under (four different) equivalences to the subcategories of Γ -mod

(
Y ′ = Cogen(DC),X ′ = ker HomΓ (−,DC)

)
,

(
F ′ = ker HomΓ (DC,−), T ′ = Gen(DC)

)
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respectively (swapping torsion pairs and torsion and torsion-free classes). The first two equiv-
alences hold since C is tilting, the second two since C is cotilting.

This leads to another characterization of projective quotient algebras. Let B again be the
projective quotient algebra.

Proposition 5.4 We have ker HomB(C,−) = ker HomB(−,C) andGen(C)∩Cogen(C) =
Add(C).

Here Add(C) is the full subcategory of B-Mod of summands of direct sums of copies
of C .

Proof The TTF-triple of our recollement (see after Definition 2.5) is given by

(Gen(C), ker HomB(C,−) = ker e = ker HomB(−,C),Cogen(C)),

giving the first equality,F = X . The second follows from the discussion after Definition 2.5.
	


Recall from the introduction that there is a unique basic tilting cotilting Γ -module T
generated and cogenerated by projective–injectives.

Proposition 5.5 We have DC ∼= T , so B ∼= EndΓ (T ).

Proof By Lemma 1.1 it suffices to show that DC is generated and cogenerated by
projective–injective left Γ -modules, or equivalently that C is generated and cogenerated by
projective–injective right Γ -modules. By the theory of Auslander algebras (or the Nakayama
isomorphism ΘX,Y ), E = e(C) is a projective–injective right Γ -module. We look at the epi-
morphism p and monomorphism i ,

�e(C)
p−→ ce(C) = C

i−→ re(C).

These are maps of left B-modules, but they are functorial, so also maps of right Γ -modules.
By definition of the right adjoint, re(C) = HomA(e(B), e(C)) is a Γ -submodule of
HomK (e(B), e(C)) ∈ Add(e(C)) = Add(E). By definition of the left adjoint, �e(C) =
Be⊗A e(C), which is a quotient of Be⊗K e(C) ∈ Add(E) as a Γ -module. This proves that
C is generated and cogenerated by Add(E). 	


The same argument gives another characterization of projective quotient algebras.

Theorem 5.6 If B is an arbitrary finite-dimensional algebra and C is a basic tilting and
cotilting B-module satisfying the properties in Proposition 5.4, then B is a projective quotient
algebra.

Proof The condition on the kernels gives a strong TTF triple

(X = Gen(C),Y = ker HomB(C,−) = ker HomB(−,C),Z = Cogen(C))

in B-Mod. The corresponding recollement is given by an idempotent element e ∈ B by
Psaroudakis and Vitória [19, Corollary 5.5]. Letting A = eBe, the intermediate extension
functor gives an equivalence

c : A-Mod → Gen(C) ∩ Cogen(C) = Add(C)
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fromwhich it follows that A is representation-finite and E = e(C) is an Auslander generator.
This implies that

Γ = EndB(C)op = EndA(E)op = EndA(e(C))op

is the Auslander algebra of A. NowC has the property that it is generated and cogenerated by
projective–injective right Γ -modules as in the proof of Proposition 5.5. The result follows.

	

Now, let Γ be the Auslander algebra and ε ∈ Γ = EndA(E)op be the idempotent element

corresponding to the projection on the direct sum of all projective A-modules (which is
isomorphic to A, so εΓ ε ∼= EndA(A)op ∼= A).We look at themap given by leftmultiplication
with this idempotent,

ε : Γ -Mod → A-Mod.

We remark that, ker ε is equivalent to
(
A-Mod

)∧, which is also equivalent to ker e ∼= Ĥ/P
in our main recollement. It means we can find two recollements with the same outer terms
and modules over the two tilted algebras B and Γ in the middle. The next result shows that
T appears naturally in the recollement given by the idempotent ε ∈ Γ .

Proposition 5.7 One has ker ε = ker HomΓ (−, T ). In particular, we can find Add(T ) as
the Ext-injectives in the corresponding torsionfree class to ker ε.

Proof Using the previous remark and the Brenner Butler theorem, we know that

ker ε ∼= ker e = ker HomB(C,−) ∼= ker HomΓ (−, T ).

Therefore, it is enough to prove one inclusion. So, let X be a Γ -module with HomΓ (X, T ) =
0. Since T is a tilting module, it has as a direct summand every finite dimensional projective–
injective module. So in particular, every I (a)with a being a simple Γ -module corresponding
to a projective A-module is a summand of Γ . Therefore, HomΓ (X, I (a)) = 0 for those a.
But this implies dima X = 0 for those a and therefore εX = 0. 	


6 Representation schemes and varieties

In this section we prove some general results about representation varieties and schemes for
algebras.We prove a version of the First Fundamental Theorem for quivers, and thenwe apply
it to finite-dimensional algebras. Then we prove a criterion for smoothness in representation
schemes. These results are used in later sections.

We begin by recalling the basic definitions. Let K be an algebraically closed field, let A be
a finitely generated K -algebra and let e1, . . . , en be a complete set of orthogonal idempotents
in A. For d ∈ N

n
0, there is an affine schemeRA(d) of d-dimensional representations of A. For a

commutative K -algebra R, its R-points are the K -algebra homomorphisms θ : A → Md(R)

where d = ∑n
i=1 di , with the property that θ(ei ) = εi for all i , where εi is the idempotent in

Md(K ) which, under the isomorphism

Md(K ) ∼= EndK

(
n⊕

i=1

Kdi

)

,

corresponds to projection onto the summand Kdi .
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The K -points of RA(d) are K -algebra maps θ : A → Md(K ), and the corresponding
A-module is X = Kd with the action of a ∈ A given by left multiplication by θ(a). The
condition that θ(ei ) = εi ensures that ei X = Kdi under the identification Kd = ⊕n

i=1 K
di .

We write RA(d) for the affine variety of d-dimensional representations of A. Its points are the
K -points of RA(d), ignoring any non-reduced structure on the scheme. The algebraic group
Gld acts on by conjugation, and its orbits are the isomorphism classes of representations of
A of dimension d, that is, A-modules X with dim ei X = di for all i .

Suppose that K has characteristic zero. For an algebraic group G acting on an affine
variety X , we denote by X//G the categorical quotient, the variety with coordinate ring
K [X ]G , where K [X ] is the coordinate ring of X .

6.1 First Fundamental Theorem for quivers with partial group action

In this subsection the field K is algebraically closed of characteristic zero. Let QB be a finite
quiver with vertices 1, . . . , n, n+1, . . . ,m (n ≤ m) and fix a dimension vector (d, r) ∈ N

n
0×

N
m−n
0 for QB . Let Q>n be the full subquiver of QB supported on the vertices n + 1, . . . ,m.

We call a non-trivial path in QB primitive if starts and ends at a vertex in the range 1, . . . , n
but does not otherwise pass through any such vertex. Let e := ∑n

i=1 ei , and observe that
eK QBe is isomorphic to the path algebra of a quiver Q′

A with vertices 1, . . . , n whose arrows
are the primitive paths. Note that Q′

A may be infinite, but if we only consider primitive paths
of length at most N 2, where N = 1 + ∑m

i=n+1 ri , we obtain a finite subquiver QA of Q′
A.

Lemma 6.1 The natural map

RKQB (d, r)//Glr → RKQA (d) × (
RKQ>n (r)//Glr

)

is a closed immersion.

We use the method of deframing, compare [9, §1] and the proof of [8, Proposition 3.1].

Definition 6.2 Let Q∞ be the quiver with vertices ∞, n + 1, n + 2, . . . ,m and arrows as
follows. For each arrow a : i → j in QB we have

(1) If i, j ∈ {n + 1, . . . ,m}, then associated to a there is one arrow i → j in Q∞.
(2) If i ∈ {1, . . . , n}, j ∈ {n + 1, . . . ,m} then associated to a there are di arrows ∞ → j in

Q∞.
(3) If i ∈ {n + 1, . . . ,m}, j ∈ {1, . . . , n} then associated to a there are d j arrows i → ∞ in

Q∞.
(4) If i, j ∈ {1, . . . , n}, then associated to a there are did j loops at ∞.

Proof of Lemma 6.1 By breaking matrices into their rows and columns it is easy to see that
there is a Glr -equivariant isomorphism of varieties

RKQB (d, r) → RKQ∞(1, r).

Moreover, the diagonal copy of the multiplicative group K ∗ in Gl(1,r) ∼= K ∗ × Glr acts
trivially on RKQ∞(1, r), so

RKQ∞(1, r)//Gl(1,r) ∼= RKQ∞(1, r)//Glr .

We have to prove that the map on the coordinate rings

ϕ : K [RKQA (d)] ⊗K K [RKQ>n (r)]Gl(1,r) → K [RKQ∞(1, r)]Glr
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is surjective. By the First Fundamental Theorem [18], the ring

K [RKQ∞(1, r)]Gl(1,r)

is generated by traces along oriented cycles in Q∞ of length at most N 2. Moreover, since
the dimension vector at the vertex ∞ is equal to 1, we can reduce to oriented cycles of the
following two types

(i) An oriented cycle passing only through the vertices n + 1, . . . ,m. This invariant is the
image under ϕ of the corresponding trace invariant for Q>n .

(ii) An oriented cycle of length at most N 2 starting and ending at vertex∞ and not otherwise
passing through ∞. Each primitive path of length at most N 2 from i to j in QB gives
rise to did j oriented cycles of this type and all arise this way. Such a primitive path
correspond to an arrow from i to j in QA and therefore to a matrix of size d j × di in
RKQA (d). The maps RKQA (d) → K picking out the entries of this matrix are sent by ϕ

to the required trace invariant.

Thus each generator of K [RKQ∞(1, r)]Glr is in the image of ϕ, so ϕ is onto.

	

6.2 First Fundamental Theorem for finite dimensional algebras with an

idempotent

Let K be an algebraically closed field of characteristic zero, let B be a finitely generated
algebra and let e1, . . . , en, en+1, . . . , em (n ≤ m) be a complete set of orthogonal idempotents
in B.

Clearly we can write B in the form K QB/I for some quiver QB with vertices 1, . . . ,m
and some ideal I , in such a way that the trivial paths ei in K QB correspond to the given
idempotents ei in B. Let e = ∑n

i=1 ei and let A = eBe. A dimension vector for Awith respect
to its complete set of orthogonal idempotents e1, . . . , en is an element d ∈ N

n
0. A dimension

vector for B with respect to the idempotents e1, . . . , em is a pair (d, r) with d ∈ N
n
0 and

r ∈ N
m−n
0 . For any such dimension vector we have a natural restriction map e : RB(d, r) →

RA(d) given by left multiplication with e, and it induces a map RB(d, r)//Glr → RA(d).

Lemma 6.3 If B is a basic finite-dimensional algebra and the idempotents en+1, . . . , em are
primitive, then the map RB(d, r)//Glr → RA(d) is a closed immersion.

Note that here we must use the reduced scheme structure on RA(d) and RB(d, r).

Proof Writing B = K QB/I as above, we get a closed immersion RB(d, r) → RKQB (d, r).
Consider the quivers Q>n and QA given by QB and the dimension vector (d, r) as in the
previous subsection. Now we find a commutative diagram

RKQB (d, r)//Glr RKQA (d) × (
RKQ>n (r)//Glr

)

RB(d, r)//Glr RA(d) × (
R f B f (r)//Glr

)

where f = ∑m
i=n+1 ei and the right hand map is induced by the algebra homomorphisms

K QA → A and K Q>n → f B f . By Lemma 6.1 the top map is a closed immersion, and the
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Reynolds operator ensures that the left hand vertical map is a closed immersion. It follows
that the bottom map is a closed immersion. Now, the variety R f B f (r)//Glr classifies semi-
simple f B f -modules of dimension vector r . Since B is finite-dimensional and basic, so is
f B f , and by assumption en+1, . . . , em is a complete set of primitive orthogonal idempotents
in B. It follows that there is a unique such semisimple module, and therefore this quotient
variety is just a point. The claim follows. 	

6.3 Moduli spaces of stable representations

Again K is an algebraically closed field of characteristic zero. Let QB be a quiver as above and
let Q∞ be the deframed quiver constructed from a given dimension vector (d, r).We consider
the stability notion on RKQ∞(1, r) given by the vector θ ∈ R

m−n+1 defined as θi = −1 if
n + 1 ≤ i ≤ m and θ∞ = ∑m

i=n+1 di . Thus a representation M in RKQ∞(1, r) is θ -stable if
and only if for any non-zero proper subrepresentation N ofM one has θ ·dim N > 0. One can
also consider θ -semi-stable representations M defined by the condition θ · dim N ≥ 0. But
for this particular θ these two notions are equivalent. By geometric invariant theory (compare
[15]) there is a projective morphism of varieties

RKQ∞(1, r)s/Gl(1,r) → RKQ∞(1, r)//Gl(1,r)

where ()s denotes the subset of θ -stable points and the quotient on the left hand side is a
geometric quotient.

Now recall, that we have aGlr -equivariant isomorphism of varieties from RKQB (d, r) to
RKQ∞(1, r). It is easy to see that under this isomorphism the θ -stable points correspond to
the points of RKQB (d, r) which are stable K QB-modules with respect to the recollement
given by the idempotent e = ∑n

i=1 ei . Thus the projective morphism becomes

RKQB (d, r)s/Glr → RKQB (d, r)//Glr

where ()s denotes the stable points.
Now, let B be a finitely generated algebra and let e1, . . . , en, en+1, . . . , em (n ≤ m) be a

complete set of orthogonal idempotents in B, as in the previous subsection. By writing B as
a quotient of a path algebra K QB one obtains a projective morphism

RB(d, r)s/Glr → RB(d, r)//Glr .

The left hand side is a geometric quotient—to see that it is a good quotient, use e.g. [4,
Theorem 7.1.4] and the other properties check directly.

6.4 Smooth points of module schemes

Let A be a finitely generated algebra over an algebraically closed field K of arbitrary char-
acteristic, let e1, . . . , en be a complete set of orthogonal idempotents in A and let d ∈ N

n
0 be

a dimension vector. (Note that we allow the possibility that n = 1, so we just work with the
total dimension of a representation). Recall that the closed points of the scheme RA(d) are
identified with its K -points, so correspond to A-module structures X on

⊕n
i=1 K

di .

Lemma 6.4 If Ext2A(X, X) = 0, then X is a smooth point of RA(d).

The authors are indebted to D. Vossieck for pointing out that this result is already known,
at least in some form—see for example [11, Proposition 3.7]. We include our proof since it
seems so direct. We use the following version of the lifting criterion for smoothness, see [23,
Tag02HW].
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Lemma 6.5 Suppose Λ is a finitely generated commutative K -algebra and m a maximal
ideal in Λ. The following are equivalent.

(1) The scheme SpecΛ is smooth at m.
(2) Any K -algebra map Λ → R/I with

(∗)

⎧
⎪⎨

⎪⎩

R is a finite dimensional commutative local K-algebra with

maximal ideal n and I ⊂ R is an ideal with I 2 = 0 and

I ∼= R/n as an R-module, and the preimage of n/I is m,

lifts to a K -algebra map Λ → R.

Proof of Lemma 6.4 The module structure X corresponds to a homomorphism θ : A →
Md(K ) with θ(ei ) = εi for all i , and we can identify EndK (X) with Md(K ), with the left
and right actions of a ∈ A corresponding to multiplication on the left or right by θ(a).

One knows thatRA(d) = SpecΛ, for a suitable finitely generated commutative K -algebra
Λ, with the property that for any commutative K -algebra R, the K -algebra maps Λ → R
correspond to K -algebra maps ψ : A → Md(R) with ψ(ei ) = εi for all i .

In the setup of the lifting criterion we are given a finite dimensional commutative local
K -algebra R with maximal ideal n and an ideal I with K -dimension 1 and I 2 = 0. Let
p : Md(R) → Md(R/I ) and π : Md(R/I ) → Md(R/n) ∼= Md(K ) be the natural maps.
According to the correspondence above, for the criterion we are given an algebra homomor-
phism φ : A → Md(R/I ) with πφ = θ and φ(ei ) = εi for all i , and need to lift it to an
algebra homomorphism ψ : A → Md(R) with φ = pψ and ψ(ei ) = εi for all i .

Now Md(I ) is an ideal in Md(R), so it becomes a bimodule with left and right actions of
Md(R). Since I 2 = 0, these actions descend to actions ofMd(R/I ), so viaφ they give actions
of A on the left and right. In fact the actions descend to Md(R/n) ∼= Md(K ), so the actions
of A are given by left and right multiplication by θ(a). Thus Md(I ) isomorphic to EndK (X)

as a A–A-bimodule. Then H2(A, Md(I )) ∼= H2(A,EndK (X)) ∼= Ext2(X, X) = 0. Thus
any (square zero) algebra extension of A by Md(I ) is trivial (see for example [24, §9.3]).
Consider the pullback diagram

0 −−−−→ Md(I ) −−−−→ P −−−−→ A −−−−→ 0
∥∥∥

⏐⏐� φ

⏐⏐�

0 −−−−→ Md(I ) −−−−→ Md(R)
p−−−−→ Md(R/I ) −−−−→ 0

where P = {(C, a) ∈ Md(R) ⊕ A : p(C) = φ(a)}. Since p and φ are algebra homo-
morphisms, P becomes a K -algebra, and it is an extension of A by Md(I ), so it must be
the trivial extension. Thus the map P → A has a section A → P . Composing it with the
homomorphism P → Md(R) we get a lifting ψ0 : A → Md(R) with pψ0 = φ.

We now need to adjust ψ0 to obtain a lifting ψ with ψ(ei ) = εi for all i . Let S = Kn with
the coordinatewise multiplication, so it is a separable algebra over K , and let σ : S → A be
the map sending the coordinate vectors in S to the idempotents ei . Let η : S → Md(K ) be
the map sending the coordinate vectors to εi . Then the condition that θ(ei ) = εi for all i can
be rewritten as θσ = η (where we identify Md(K ) as a subalgebra of Md(R/I )). Similarly
φσ = η, and we need to find ψ with ψσ = η (where we identify Md(K ) as a subalgebra of
Md(R)).

For s ∈ S define d(s) = ψ0(σ (s)) − η(s). This defines a map from S to Md(R), and
it has image contained in Md(I ) since pd = φσ − η = 0. Now the bimodule action of
A on Md(I ) gives a bimodule action of S, in which, by the discussion above, the left or
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right action of s ∈ S can be given by left or right multiplication by any of η(s) or φ(σ(s))
or ψ0(σ (s)). Now it is easy to see that d : S → Md(I ) is a derivation, so, since S is
separable, it is an inner derivation, so there is γ ∈ Md(I ) with d(s) = η(s)γ − γ η(s) for all
s ∈ S. Letting g = 1 + γ ∈ Gld(R), it follows that gψ0(σ (s))g−1 = η(s). Then defining
ψ(a) = gψ0(a)g−1 we obtain the required lift of φ. 	


7 Geometric applications of the projective quotient algebra

Let K be an algebraically closed field, let A be a basic finite-dimensional algebra over K of
finite representation type, let e1, . . . , en be a complete set of primitive orthogonal idempotents
in A, and let B be the projective quotient algebra for A. By construction there is an idempotent
e ∈ B with eBe ∼= A, and we use this to identify A as a (non-unital) subalgebra of B. Thus
we can extend e1, . . . , en to a complete set of primitive orthogonal idempotents e1, . . . , em
for B (with m ≥ n). Dimension vectors for A-modules are elements d ∈ N

n
0, and dimension

vectors for B-module are given by pairs (d, r) with d ∈ N
n
0 and r ∈ N

m−n
0 .

7.1 Desingularizations of quiver Grassmannians for representation-finite algebras

This is a straightforward generalization of [7, §7]. Let M be a finite-dimensional A-module
and let d be a dimension vector. As in the introduction, the irreducible components ofGrA

(M
d

)

are of the form S[Ni ] for some A-modules N1, . . . , N�. Theorem 1.4 is a direct consequence
of the following theorem (compare [7, Theorem 7.5] for A hereditary).

Theorem 7.1 Let N = Ni for some i ∈ {1, . . . , �} and let (d, r) = dim c(N ).

(1) GrB
(c(M)
d,r

)
is smooth (not just as a variety, but also with its natural scheme structure)

and S[c(N )] is a connected component.
(2) The map π : GrB

(c(M)
d,r

) → GrA
(M
d

)
induced by multiplication by e is projective and

π−1(U ) ∼= GrB

(
c(M)/c(U )

dim c(N ) − dim c(U )

)

for U ∈ GrA
(M
d

)
.

(3) The image of π is closed and contains S[N ]. Over an open subset of S[N ] the map is an
isomorphism.

Proof (1) This follows from [7, Proposition 7.1] since B has global dimension ≤ 2, c(M)

has injective and projective dimension ≤ 1, and Ext1B(c(M), c(M)) = 0.
To show that S[c(N )] is a connected component, it is enough to see that it contains an open

subset. Since S[N ] contains by assumption an open subset, we just need to see π−1(S[N ]) =
S[c(N )]. So, take U ⊂ c(M) such that e(U ) ∼= N . By Lemma 2.1 we conclude c(N ) is a
subquotient of U and since they have the same dimension vector they are isomorphic. On
the other hand, any point in S[c(N )] maps clearly to S[N ].

(2) If F is a submodule of c(M) of dimension vector (d, r) then e(F) is a submodule
of ec(M) = M of dimension d , so there is a morphism π as indicated. It is a projective
morphism since GrB

(c(M)
d,r

)
is projective. We claim that we have

π−1(U ) = {F ⊂ c(M) | dim F = (d, r), c(U ) ⊂ F}.
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The statement in the theorem follows immediately from the claim. In order to prove the
claim, it is enough to show that for F ⊂ c(M) with dim F = (d, r) one has the following
equivalence:

e(F) = U ⇔ c(U ) ⊂ F.

Suppose we are given F ⊂ c(M) with dim F = (d, r) and e(F) = U . Then we know that F
is in Ĥ and stable because it is a submodule of the stable module c(M) and by Lemma 2.3,
we have

c(U ) = ce(F) ⊂ F.

On the other hand, suppose we are given F ⊂ c(M) with dim F = (d, r) and c(U ) ⊂ F .
Since e is exact, we get U = ec(U ) ⊂ e(F). For 1 ≤ i ≤ n there is a simple A-module Si
and a projective A-module Pi as at the start of Sect. 3, and we have

(dim U )i = dim HomA(Pi ,U ) = dim HomA(Pi , N )

= dim c(N )(Pi → 0) = dim F(Pi → 0) = (dim e(F))i

and therefore U = e(F).
(3) Since π is projective, its image is closed. For everyU ∈ S[N ] we have c(U ) ∈ S[c(N )]

and π(c(U )) = U , therefore S[N ] is contained in the image. By (2), we get that the morphism
restricts to a bijection π−1(S[N ]) = S[c(N )] → S[N ]. To see that it is an isomorphism over an
open set we just need to see that it is an isomorphism on tangent spaces over an open set. Now,
the map π has a scheme-theoretic version π ′—straightforward to define on commutative K -
algebra valued points—such that the map on underlying reduced schemes coincides with
π . Let U ∈ GrB

(c(M)
d,r

)
(be a K -valued point), then the tangent map of π ′ at U is given by

HomB(U, c(M)/U )
e−→ HomA(e(U ), M/e(U )). Now, we prove for U ∈ S[c(N )], the map

on tangent space is injective as follows: Since U ∼= c(N ), it is bistable, so it equals ce(U ).
The canonical epimorphism c(M)/U = c(M)/ce(U ) → c(M/e(U )) has kernel X , say,
with e(X) = 0. Applying HomB(U,−) gives an exact sequence

0 → HomB(U, X) → HomB(U, c(M)/U )

→ HomB(U, c(M/e(U ))) ∼= HomA(e(U ), M/e(U ))

SinceU is is bistable, we get HomB(U, X) = 0 and the second map equals the tangent map.
Since GrB

(c(M)
d,r

)
is reduced, the tangent map actually factors through the tangent space

of the variety GrA
(M
d

)
at e(U ). For U ∈ S[c(N )], since U ∼= c(N ) we have Ext1B(U,U ) = 0

by Theorem 4.4, so

dim HomB(U, c(M)/U ) = dim HomB(U, c(M)) − dim HomB(U,U )

= dim HomA(N , M) − dim HomA(N , N ) = dim S[N ].

Since the varietyGrA
(M
d

)
has to have some smooth points in S[N ], we conclude that for these

the map on tangent spaces is an isomorphism. 	

7.2 Orbit closures as quotients

Let RB(d, r) be the representation space of all (d, r)-dimensional B-modules. The functor
e induces a map RB(d, r) → RA(d), also denoted e. We observe the following.

Lemma 7.2 Assume RB(d, r) �= ∅ and N ∈ RA(d). Then the following are equivalent.
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(1) N ∈ Im e
(2) dim c(N ) ≤ (d, r) (pointwise at every idempotent for B)

In particular, Im e is a closed subset of RA(d).

Proof Assume N = e(F) for some F ∈ RB(d, r). By Lemma 2.1(2) we get dim c(N ) ≤
dim F = (d, r). Now assume dim c(N ) ≤ (d, r). Because the algebra B is basic and
finite-dimensional, there is a unique semi-simple B-module S1 of dimension dim c(N ) and
a unique semi-simple B-module S2 of dimension (d, r). Since dim c(N ) ≤ (d, r) one has
S1 is a submodule of S2, set S = S2/S1. We have e(S) = 0 and the dimension of S is
(d, r) − dim c(N ). Set F = c(N ) ⊕ S, this gives a point in RB(d, r) with e(F) = N , so
N ∈ Im e. This proves (1).

We now show that the image of e is closed. As we are in the representation-finite case, we
just need to see that if M ∈ Im e and N ∈ OM then N ∈ Im e. By [25, Theorem 1], there is
some A-module Z and an exact sequence

0 → N
i−→ M ⊕ Z

p−→ Z → 0.

Applying c we get a (not exact) sequence

c(N )
c(i)−−→ c(M) ⊕ c(Z)

c(p)−−→ c(Z).

Since c is an additive functor we have Im c(i) ⊂ ker c(p) and since intermediate extensions
preserve mono- and epimorphisms we have that c(i) is a monomorphism and c(p) is an
epimorphism. This implies dim c(N ) ≤ dim c(M), giving the result. 	


Let M be a (K -valued) point in RA(d). We consider the closure of its Gld -orbit OM ⊂
RA(d) (with the reduced scheme structure).

Lemma 7.3 If dim c(M) = (d, r), then the (set-theoretic) image of the map e : RB(d, r) →
RA(d) is OM.

Proof The image is closed andGld -invariant in RA(d) (see the last lemma). Since ec(M) =
M we conclude that OM is a subset in the image of e. Now, given N in the image of e, let
us say N = e(F). Then, by Lemma 7.2 we get dim c(N ) ≤ dim c(M). We conclude for
P → X indecomposable in H

dim c(N )(P → X) = dim HomA(P, N ) − dim HomA(X, N )

≤ dim HomA(P, M) − dim HomA(X, M)

= dim c(M)(P → X).

But since dim N = dim M we have dim HomA(P, N ) = dim HomA(P, M), so it follows
that dim HomA(X, N ) ≥ dim HomA(X, M), and this implies by [25] that N ∈ OM . 	


We now have our generalization of [8, Theorem 1.2].

Theorem 7.4 Assume that K has characteristic zero. If M is an A-module and (d, r) =
dim c(M), then OM is isomorphic to the affine quotient variety RB(d, r)//Glr , and also to
Oc(M)//Glr .

Proof The first isomorphism holds since e : RB(d, r)//Glr → RA(d) is a closed immersion
by Lemma 6.3, and it has set-theoretic image OM by the previous lemma. The second
isomorphism is straightforward (see [8, Theorem 3.3]). 	
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7.3 Desingularization of orbit closures

Applying the discussion about moduli spaces of stable representations in Sect. 6 to the
projective quotient algebra B with its complete set of primitive orthogonal idempotents
e1, . . . , en, . . . , em and a dimension vector (d, r) ∈ N

n
0 ×N

m−n
0 gives a projective morphism

RB(d, r)s/Glr → RB(d, r)//Glr ,

and the left hand side is a geometric quotient. Fix a finite dimensional A-module M , and
take the dimension vector to be (d, r) = dim c(M). Since Oc(M) ∩ RB(d, r)s is closed in
RB(d, r)s , the geometric quotient byGlr exists and by composing with the closed immersion
and the isomorphism from the previous theorem one gets a projective map

ϕ : (Oc(M) ∩ RB(d, r)s)/Glr → RB(d, r)s/Glr → RB(d, r)//Glr ∼= OM .

Theorem 7.5 ϕ is a desingularization.

Proof We claim that RB(d, r)s/Glr is smooth. Since the global dimension of B is at most
2, we can use Lemma 4.10 to see that the second self-extension group of every stable
point vanishes. By Lemma 6.4, we get that this is a smooth point in RB(d, r), therefore
the open subvariety RB(d, r)s is smooth. It follows that RB(d, r)s/Glr is smooth because
RB(d, r)s → RB(d, r)s/Glr is a principal bundle. Now, (Oc(M) ∩ RB(d, r)s)/Glr is a con-
nected component of it, since Oc(M) is an irreducible component of RB(d, r) because c(M)

is rigid.
Weneed to see thatϕ is bijective overOM . The preimageofOM under themapRB(d, r) →

RB(d, r)//Glr ∼= OM is the Gl(d,r)-orbit of c(M). To see this, take a a point F in the fibre
over M . Then c(M) is a subquotient of F by Lemma 2.1 which has the same dimension as F ,
therefore they are isomorphic. The restrictionOc(M) → OM is a principalGlr -bundle. By [5,
Theorem5.25] the geometric quotient exists and themap factors over an induced isomorphism
Oc(M)/Glr → OM . But this coincides with the restriction of our map RB(d, r)s/Glr →
RB(d, r)//Glr ∼= OM to the preimage of OM . 	


For orbit closures of Dynkin quivers there already exists a resolution of singularities
constructed by Reineke using the directedness of the Auslander–Reiten quiver of Dynkin
quiver, see [20].

8 Examples of projective quotient algebras

In this section, we choose representation-finite algebras A and describe the associated pro-
jective quotient algebras B.

8.1 Hereditary algebras of finite representation type

In this case A = K Q with Q a Dynkin quiver (i.e. the underlying graph is Dynkin of type
A,D or E). The homotopy categoryH is equivalent to the full subcategory ofQ given by the
objects f : P → X such that X has no non-zero projective summand and so it is equivalent
to the category HQ of [7] and [8]. Our algebra B coincides with the algebra BQ from loc.
cit. where they calculate its Ext-quiver and the relations from extensions between simple
modules. Our results for this case are as loc. cit. The desingularization of orbit closures is
not explicitly considered there, but other desingularizations are already known, see [20], and
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the Hernandez–Leclerc construction [12] relates orbit closures to Nakajima quiver varieties,
and in this context moduli spaces have previously been used to obtain desingularizations, cf.
[21, Theorem 3.2].

8.2 Self-injective algebras of finite representation type

In this case the functor ker from H to A-mod sending an object f : P → X to ker( f ) is an
equivalence of categories. So, B is isomorphic to the Auslander algebra Γ of A. Moreover,
we have a commuting diagram of functors

B-Mod
e

A-Mod

Γ -Mod

k̂er

ε
A-Mod

where ε = ∑n
i=1 e[Pi ] is the idempotent in Γ = EndA(E)op corresponding to the summand

of E corresponding to indecomposable projective modules.

8.3 The truncated polynomial ring

Let A = K [X ]/(Xn). This algebra is representation-finite and self-injective. The inde-
composables in Q are the objects Ur := (A → K [X ]/(Xr )) with 0 ≤ r ≤ n and the
indecomposables inH are those with r < n. (But note thatH is not equivalent to the full sub-
category ofQ containing these indecomposables.) The Auslander algebra of A (and therefore
also B) has a unique structure as quasi-hereditary algebra. Explicitly, we can describe B with
the quiver

n − 1
pn−1

n − 2
jn−1

pn−2

· · · · · ·
jn−2

p3

2
p2

j3

1
p1

j2

[0]
j1

and relations pr jr = jr−1 pr−1, 0 < r − 1 < n − 1, and pn−1 jn−1 = 0. The brackets
[−] indicate the idempotent e such that eBe = A. The stable modules are given by the
modules F with Hom(Ur , F) = 0 for 1 ≤ r ≤ n, this means in F all maps p∗ have to
be monomorphisms. The costable modules are given by modules H with Hom(H,Ur ) = 0
for 1 ≤ r ≤ n, this means in H all maps j∗ have to be epimorphisms. The stable modules
coincide with the Δ-filtered modules and the costable modules with the ∇-filtered modules
for the unique quasi-hereditary structure (see next example or e.g. [6]). In particular, the
tilting module C coincides with the characteristic tilting module.

Our geometric construction of the orbit closures as affine quotient varieties coincides with
the one from Kraft and Procesi in [16, § 3.3]. Their variety Z equals our RB(d, r) and the
union of the stable and the costable locus is contained in their smooth variety Z0.

8.4 The nilpotent oriented cycle

Let Q be the quiver with vertices {1, . . . , N } identified with their residue classes in the
additive group Z/NZ. For each vertex i , we have one arrow xi : i → i +1. Let I be the ideal
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given by all paths of length n in Q. Then, the algebra A = K Q/I is a representation-finite,
self-injective Nakayama algebra, for N = 1 we reobtain the previous example. We denote by
Ei [r ] the indecomposable A-module with top Si of dimension r , i ∈ Z/NZ, r ∈ {1, . . . , n}.
If we set Ei [0] := 0, the indecomposable objects in H are Ui,r := (Ei [n] → Ei [r ]),
i ∈ Z/NZ, 0 ≤ r ≤ n− 1. The algebra B can be described by the quiver with vertices (i, r),
i ∈ Z/NZ, 0 ≤ r ≤ n − 1 and arrows and relations see below (for N = 3, n = 4 with
identification of the left and right boundary)

(2, 4)
p

(3, 4)
p

(1, 4)
p

(2, 4)

(3, 3)
p

j

(1, 3)

j

p
(2, 3)

j

p

(3, 2)

j

p
(1, 2)

j

p
(2, 2)

j

p
(3, 2)

(1, 1)

j

p
(2, 1)

j

p
(3, 1)

j

p

[(1, 0)]

j

[(2, 0)]

j

[(3, 0)]

j

[(1, 0)]

the [−] indicates the idempotent e with eBe = A. The stable modules are given by the
condition that all maps p are monomorphisms and the costable modules by the condition that
all maps j are epimorphisms. There is a quasi-hereditary structure on B such that the stable
modules are the Δ-filtered and the costables are the ∇-filtered, this can e.g. be obtained by
the following ordering of the vertices in the quiver above: Take any total ordering refining
(i, r) < ( j, t) for all r < t and use the conventionΔ(λ) = P(λ)/

∑
μ>λ Im (P(μ) → P(λ)),

∇(λ) = ⋂
μ>λ ker (Q(λ) → Q(μ))where Q(λ) is the injective hull of the simple supported

at vertex λ.
In this case the orbit closures are normal, desingularizations are known (by adapting the

construction of [20]) and they are dense subvarieties of affine Schubert varieties of type A,
see [22, Proposition 1.1 and 6.2].

8.5 The commuting square

Let A be given by the following quiver with relation

2 1

4 3

.

This algebra is of finite representation type, tilted of type D4. But the homotopy categoryH
is not a full subcategory ofQ. We write [U ] for the indecomposable object PU → U withU
indecomposable non-projective and [i] for the indecomposable Pi → 0 inH. The algebra B
is given by the following quiver with relations.
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[2]

[S2]
[
0 1
0 1

]

[4] [
τ−1S4

] [
1 1
0 1

]
[S1] [1]

[S3]
[
1 1
0 0

]

[3]
Here e = e[1] + e[2] + e[3] + e[4] is the idempotent such that eBe = A. The intermediate
extensions of the indecomposables are given as follows: c(Si ) = S[i] for 1 ≤ i ≤ 4, and

c
(
1 0
1 0

) =
1

1 0
1 1 0 0 0

0 0
0

, c
(
0 1
0 1

) =
0

0 0
0 0 0 1 1

0 1
1

c
(
1 0
1 1

) =
1

1 0
1 1 0 0 0

1 0
1

, c
(
1 1
1 1

) =
1

1 1
1 1 1 1 1

1 1
1

and similarly for 1 1
0 0 , 0 0

1 1 and 1 1
0 1 . Another desingularization for the quiver Grassmannians

(for algebras iterated tilted of Dynkin type) has been found in [14] where they discuss the
above example. Their construction uses the repetitive algebra of a Dynkin quiver of type D4.
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