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ABSTRACT

Large-scale dynamo action is well understood when the magnetic Reynolds number (Rm) is small, but becomes
problematic in the astrophysically relevant large Rm limit since the fluctuations may control the operation of the
dynamo, obscuring the large-scale behavior. Recent works by Tobias & Cattaneo demonstrated numerically the
existence of large-scale dynamo action in the form of dynamo waves driven by strongly helical turbulence and
shear. Their calculations were carried out in the kinematic regime in which the back-reaction of the Lorentz force
on the flow is neglected. Here, we have undertaken a systematic extension of their work to the fully nonlinear
regime. Helical turbulence and large-scale shear are produced self-consistently by prescribing body forces that, in
the kinematic regime, drive flows that resemble the original velocity used by Tobias & Cattaneo. We have found
four different solution types in the nonlinear regime for various ratios of the fluctuating velocity to the shear and
Reynolds numbers. Some of the solutions are in the form of propagating waves. Some solutions show large-scale
helical magnetic structure. Both waves and structures are permanent only when the kinetic helicity is non-zero on
average.
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1. INTRODUCTION

Dynamo action is often invoked to explain the origin of
magnetic fields in astrophysics. In many cases the generated
magnetic fields are organized on spatial and temporal scales
much larger than that of the underlying turbulence. The process
by which the magnetic field organizes itself on large scales is
often termed the “large-scale dynamo problem.” This is well
understood when the magnetic Reynolds number (Rm) is small
and first order smoothing applies, but becomes problematic as
Rm increases; the magnetic fluctuations become dominant and
obscure the large-scale behavior. This has led Cattaneo &
Tobias (2014) to suggest that large-scale dynamo action is
possible only if some mechanism exists to control the magnetic
fluctuations. They proposed that this “suppression principle”
could be mediated, for instance, by shear flows, diffusion, or
nonlinearity. As their model was kinematic (i.e., neglected the
back-reaction of the magnetic field on the flow) and at high Rm
(i.e., very non-diffusive) they concluded that the suppression
was associated with the shear. In their model the large-scale
dynamo action manifested itself in the form of propagating
dynamo waves of the type that had been predicted by Parker
(1955). Given the nature of the model it was not clear what role
nonlinearity would subsequently play; it could help to control
the fluctuations by saturating them at low amplitude or it could
be detrimental by wiping out the large-scale induction process
(known as “α-quenching” in the terminology of mean-field
electrodynamics).

Motivated by these considerations, in this paper we begin a
study of the effects of nonlinearities on large-scale dynamo
action. As a starting point for our investigation we consider a
model similar to that of Tobias & Cattaneo (2013) and
Cattaneo & Tobias (2014). We do this because we know that
this system, at least when the field is very weak, has large-scale
dynamo behavior that is robust and persists even when Rm is
extremely large. This high Rm regime was accessible to these

authors because they considered a velocity with a symmetry
that reduces the kinematic dynamo problem to a two-
dimensional one. This reduction is no longer possible in the
nonlinear regime, with a corresponding increase in the cost per
computation of several orders of magnitude. Here one of our
primary objectives is to map out the landscape of possible
solutions, which requires running many different cases. We
forgo, for now, the possibility of reaching very high Rm and
consider instead the moderate Rm regime. Of course, our long-
term plan is to return to the high Rm regime, once we have a
better idea where to look for solutions with suitable properties.
We should, at this stage, point out that there have been many

fully nonlinear investigations of dynamo action at moderate Rm
(Brandenburg & Subramanian 2005; Käpylä & Branden-
burg 2009; Vishniac & Shapovalov 2014; Bhat et al. 2015,
and references therein). What distinguishes our approach from
these is the underlying philosophy. Typically large-scale
behavior is sought by finding mechanisms that strengthen the
induction (Yousef et al. 2008; Käpylä & Brandenburg 2009;
Sridhar & Singh 2010; Hughes & Proctor 2013). Here, and
following the suppression principle, we are seeking situations
where the fluctuations are either suppressed or controlled.
Based on the kinematic results, we believe that this mechanism
will continue to work when calculations are extended to
high Rm.

2. FORMULATION

We consider three-dimensional, forced incompressible
magnetohydrodynamics in a Cartesian triply periodic domain
of dimension (L, L, Lz). The evolution of the magnetic field (B)
is given by the induction equation, written in dimensionless
form as

( ) ( )¶
¶

=  ´ ´ + 
B

v B B
t Rm
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where Rm is the magnetic Reynolds number and v is the fluid
velocity. In kinematic theory v is prescribed. Here, however,
we wish to consider the nonlinear regime, where v must be
computed self-consistently as the solution of the momentum
equation, which in dimensionless form is given by

· · ( )¶
¶

+  -  = - +  +
v

v v B B v F
t

P
Re

1
, 32

where Re is the kinetic Reynolds number, P is the total
pressure, and F is a forcing function, and we assume that v is
incompressible, i.e., · =v 0.

When the magnetic field is very weak the velocity is
determined only by the forcing F and Re. We wish to choose F
such that, when the magnetic field is weak, the flow is similar
to that considered by Tobias & Cattaneo (2013). If this is
achieved, all subsequent departures must be due to the
nonlinear back-reaction of the magnetic field. These flows
were designed with two important properties. The first is that
they are invariant in the z-direction, which is crucial to effect
the reduction of the kinematic problem from three to two
dimensions. The second is that they consist of the superposition
of a large-scale unidirectional shear flow and a small-scale
chaotic velocity. Of course here, even if the flow is invariant in
one direction initially there is no guarantee that it will be so at
later times, because of the intervention of the Lorentz force.

The shear part of the velocity can be achieved in a number of
ways. Here we choose the simplest, which is just to prescribe it
to have the form

ˆ ( )p
= ⎜ ⎟⎛

⎝
⎞
⎠v xv

y

L
cos

2
. 4s s

For the rest of the flow we adopt a forcing function of the form

∣ ∣
( ) ˆ ( ) ˆ ( )å xy y=  ´ + -F

k
x z x z
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so that F is the superposition of vector fields that are solenoidal
and independent of z. The parameter xk0

, which consists of
random pairs of (x, y) co-ordinates, is used to control the
helicity of the individual vector fields. Clearly if x = 0k0

then
the vector fields are maximally helical while if xk0

is of order
-k0

1 then the helicity becomes small. We pick the ( )y xk0 to be
random functions with a characteristic spatial scale given by
-k0

1 and a correlation time that is comparable with the turnover
time of the eddy. Details of how this construction is effected
are contained in the Appendix.

The selection of this 2.5-dimensional forcing deserves some
more discussion. In all cases, both kinematic and nonlinear, it
affords some computational advantage. However the nature of
the advantage is slightly different in the kinematic and
nonlinear regimes. Before we discuss this point, we need to
be clear what is meant in this paper by kinematic and nonlinear.
In a system where the magnetic field is initially weak, the time
over which the Lorentz force is negligible in the solution of the
momentum equation is termed the kinematic regime. The
system becomes nonlinear in the dynamo sense when this
condition is violated. In the kinematic regime the momentum
equation is decoupled from the induction equation; this justifies
studying dynamo action by solving the induction equation for a
prescribed velocity. This procedure defines a kinematic

dynamo calculation. For a kinematic calculation, the advantage
of using 2.5-dimensional flows is that the induction equation
becomes separable and the dynamo problem becomes two-
dimensional. This is a huge saving, which has allowed this type
of kinematic calculation to reach very large magnetic Reynolds
numbers. In a nonlinear calculation dimensional reduction is
not possible. However, it is highly desirable to study dynamo
systems whose critical magnetic Reynolds number for the onset
of dynamo action is low; for these flows even cases with
moderate Rm are highly supercritical. It is well known that 2.5-
dimensional flows (or flows that are nearly 2.5-dimensional)
are of this type and so it is possible to reach magnetic Reynolds
numbers well above critical.
Once the forcing and the shear have been prescribed, the

equations can be solved for v and B as an initial value problem.
To enable the observation of a kinematic regime where the
effects of the field on the flow are negligible we choose
∣ ∣ ∣ ∣B v initially.

The calculations are performed using standard pseudo-
spectral techniques optimized for use on massively parallel
computers, with a resolution of 512 × 512 × 128. In what
follows we choose L = 1 (Cattaneo et al. 2003).

3. RESULTS

3.1. Hydrodynamic Considerations

As noted above, in the kinematic regime, the velocity is
determined by the kinetic Reynolds number Re and the forcing
alone. In principle, by judiciously choosing F—selected via the
momentum equation—one could drive any desired velocity.
For instance, we could choose F to be the forcing function that
drives exactly the velocity field used by Tobias & Cattaneo
(2013); thereby having exactly the same kinematic dynamo
regime—albeit here at smaller Rm due to the computational
cost. However, this procedure is only guaranteed to work if Re
is small. As Re increases, the target velocity may become
unstable and the solution may depart from the desired flow. Of
particular relevance here is that even if the forcing is z-
independent the resulting velocity may not be, and similarly
even if F is chosen to be maximally helical the resulting flow
may not be—although one expects that in general if F is
strongly helical then the resulting velocity will be likewise.
Thus even for moderate Re one only has partial control of the
resulting velocity. For this reason, here we did not go to great
lengths in trying to replicate exactly the velocity used in Tobias
& Cattaneo (2013) and chose instead something that was
similar and computationally more convenient. We note here
that the forcing functions are defined by random amplitudes
and a characteristic spatial scale, given by 1/k0. It is important
here, because we are considering the nature of large-scale
dynamo action, that we can enforce a separation of scales (at
least kinematically) between the spatial scale of the flow and
the integral scale that is given by the size of the computational
domain. We pick k0L/π ranging between 14 and 20 as a
reasonable compromise between having a huge separation of
scales and what is computationally feasible. The amplitudes are
chosen so that the resulting kinematic fluctuating velocity—not
counting the shear—is of order unity. Thus Rm and Re as they
appear in the above equations would be the true Reynolds
numbers for a velocity with a characteristic scale comparable
with the integral scale, such as the shear. Consequently the
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corresponding Reynolds numbers for the fluctuating velocities
are k0 times smaller.

3.2. Kinematic Regime

When the field is weak, the Lorentz force is negligible and
the momentum equation decouples. The dynamo problem
reduces to the solution of the induction equation for a
prescribed velocity. If the latter is z-independent then solutions
can be sought in the form ( ) ( )=B B x y t ik z, , exp z0 for any kz.
This allows a reduction of the dynamo problem to a two-
dimensional system that has been exploited by several authors
(Roberts 1972; Galloway & Proctor 1992; Cattaneo &
Tobias 2005). If the velocity is stationary, dynamo solutions
of this type eventually grow with a well-defined average
growth rate σ that depends on Rm and kz. If the basic flow is
chaotic, as it is here, it is found that the growth rate becomes
independent of Rm for large Rm and approaches this
asymptotic value quickly. Thus the dynamo is both “fast”
and “quick” (Tobias & Cattaneo 2008). The growth rate as a
function of kz typically has a well-defined maximum, which for
moderate to high Rm is somewhat flat. For flows of the type we
are considering here, the characteristic scale in the z-direction is
approximately twice that in the horizontal. This will be
important later (in the nonlinear regime) when we have to
choose the length of the computational domain in the z-
direction. In the absence of shear, the spatial scale of the
magnetic field is the same as that of the velocity. The presence
of shear modulates this pattern, with a characteristic scale
comparable with that of the shear (see Figure 1). If the flow is
also helical then the combined effect of the shear and the
helicity is to introduce large-scale spatiotemporal organization
in the form of propagating dynamo waves.

To make the organization apparent, we follow Tobias &
Cattaneo (2013), by averaging the solutions in x and plotting
Bx(z = 0) as a function of y and t. This has been done for a
number of different cases in Figure 2. In general, the existence
of these waves depends on the product of helicity and shear,
thus one expects that there should be a boundary in the shear-
helicity plane separating regions where dynamo waves may be
unambiguously observed from those where the waves (even if
existing) are swamped by the small-scale fields. Figure 2 shows

this transition from unambiguous to dodgy for fixed shear and
decreasing (normalized) helicity H defined by

· ( )
∣ ∣ ∣ ∣

( )=
á  ´ ñ

á - ñá  ´ ñ
v v

v v v
H , 6

S

Figure 1. The x component of the B field. In the left panel, there is no shear, so B is amplified all over the volume. In the right panel, the shear modulates the dynamo
so B is strong where the shear is strong.

Figure 2. Bx (at z = 0) averaged over the x-direction as a function of t and y
from four different simulations. We keep vs = 4, u0 while we vary xko

.
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where áñ represents a spatial-average. The boundary is some-
what subjective; one could argue that the top panel is definitely
within the dynamo wave region, the lower panel is not, and the
boundary occurs somewhere between panels three and four
(possibly close to panel four). Figure 3 shows the region where
dynamo waves exist in the parameter space spanned by the
normalized helicity and inverse shear.

The emergence of dynamo waves depends on the presence of
both large-scale shear and a small-scale flow lacking reflexional
symmetry, for which the helicity provides a useful measure.
Figure 3 shows that for reasonable values of the shear and
helicity, a decrease in the helicity of the flow can be made up
for by a corresponding increase in the shear—and vice versa.
Here, it is important to be clear about in what sense there is a
large-scale dynamo wave. All spatial scales of the solution
grow exponentially with a well-defined growth rate. However
the large scales also display oscillatory behavior with a well-
defined period and a coherent phase, whereas the small scales
have no such phase coherence. This “definition” is important
and will play a role later when we analyze the nonlinear
solutions.

3.3. Nonlinear Solutions

The nonlinear problem is solved as an initial value problem;
therefore some initial conditions must be selected. We choose
the initial conditions so that the nonlinear state emerges from a
kinematic evolution that we understand. We therefore select
Lz = 0.64; for this box size, and depending weakly on the
shear, the fastest growing kinematic modes have a wavelength
in z that is close to half the size of the box (in the vertical
direction). Once the fastest growing mode has established
itself, it grows exponentially with a well-defined growth rate
and eventually the Lorentz force becomes important and
nonlinear effects saturate the exponential growth and lead to a
stationary nonlinear state.

It is conceivable that, and indeed it would be nice if, the
process of saturation were associated with a slight change in the
velocity, so that the overall morphology of the velocity and the
magnetic field remains close to that of the kinematic phase,
except that the magnetic field does not grow exponentially any

more. This “weakly nonlinear” type of solution has not been
found here (despite extensive investigations). Instead, what has
been found is that the nonlinear saturation always involves

Figure 3. Regime diagram for kinematic solutions as a function of H and dv vs.
The triangles mark the values of H and the ratio of fluctuating velocity to the
shear amplitude from the wave simulations. The plus signs mark the rest of the
simulations (no wave).

Figure 4. Regime diagram for nonlinear solutions (given in table 1). The
values of dv vs vs. Re are calculated in the nonlinear regime. We group them
into four groups and assign each group with the following symbols: asterisk,
diamond, triangle, and plus sign. Solutions in each group share the same
properties.

Figure 5. The averaged Bx over the x-direction as a function of t and y from four
different simulations. We vary vs while keeping other parameters unchanged.
From the top panel to the bottom panel, the magnitudes of vS are v0, 2v0, 4v0, and
8v0, respectively. The averaged values of δ v/vS are 1.4 (Run 14), 0.7 (Run 25),
0.3 (Run 39), and 0.1 (Run 60) in the same top-to-bottom order.
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significant modification of the velocity and a corresponding
change in field morphology.

Typically, when the kinematic solution reaches a significant
amplitude the system enters a complicated intermediate state
and after a time—which can be a number of turnover times—
we find that the solution takes one of four solution types.
Before describing these we would like to make some general
remarks concerning the underlying symmetries of the MHD
system. The MHD equations only have quadratic nonlinearities
that introduce certain symmetries that are best described
spectrally. There are two invariant subspaces of solutions
under evolution of the MHD equations. The first, which we

term Type 1, has solutions where the velocity only has kz even
(normalized to the height of the box Lz) and the magnetic field
has kz odd. The second (Type 2) has the wavenumber of both
the magnetic field and velocity even. Initial conditions that
have either of these symmetries are therefore preserved (owing
to the symmetry of our forcing). For example, the kinematic
modes are of Type 1, so a “weakly nonlinear” saturation would
rely on the Type 1 subspace being stable. However we have
found that, whatever the symmetry of the final state—discussed
below—the intermediate state always involves a solution that
has no particular symmetry. Another general consideration
concerns the characteristic scale of the solutions in the invariant
z-direction. In the kinematic regime it is set by the wavelength
of the mode of maximum growth rate; in the nonlinear regime
it appears to be set by the box size, i.e., the solution expands in
z to fill the entire box. For instance for a box of height 0.64

Figure 6. The values of ( ( )) ( ( )f f-tIm Im 0 from the four simulations presented in Figure 5. The function f(t) is from the assumption that the values of Bx are equal
to ∣ ∣ [ ( ( )) ( ( ))]f f+B Re t i texp Imx .

Figure 7. The top panel shows the time evolution of magnetic energy for a
typical “+” solution. The bottom left panel shows the color plot of Bx on the zy-
plane at where magnetic energy is not at its peak, while the bottom right panel
shows it at its peak. The simulation corresponds to Run 47.

Figure 8. The time evolution of H as the function of time for the “+” solution
shown in Figure 7. It rapidly drops to zero on average when the Lorentz force is
no longer negligible.
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where the kinematic solution consists of two copies of the
fastest growing mode stacked on top of each other, the
nonlinear solution, depending on its symmetry has a magnetic
field with either kz = 0 or kz = 1.

Figure 4 shows the distribution of solution types as a
function of Reynolds number and inverse shear parameter
dv vS, where dv is the rms value of the velocity fluctuations
(i.e., the velocity minus the shear). We should stress that
although vS is prescribed dv is not, and changes as the
calculation progresses. The values quoted in Figure 4 corre-
spond to those calculated in the nonlinear state. The magnetic
Prandtl number is fixed to have the value 2.5. The different
symbols correspond to different types of solutions. We begin
by describing a vertical cut at moderate Re going from small to
large shear (we shall refer to the different types of solutions by
their symbol type).

Figure 5 shows spacetime plots for three different types of
solutions, where the two middle panels both correspond to
diamonds. In the top panel there is no evidence of anything
propagating. For every value of y the field is predominantly
unidirectional and its direction rotates in the (z, x)-plane with y.
In other words the large-scale field is in the form of a helix. It is
interesting that, despite the time-dependent nature of the
forcing, it is possible to find a solution that is nearly steady.
Furthermore, we note that most of the magnetic energy is
contained in a structure that does not react back on the velocity,
does not interact with the shear, and dissipates very slowly.
This is reminiscent of Archontis type dynamos (Archontis
2000; Cameron & Galloway 2006).

Even though most of the magnetic energy is in the helical
structure, it does have a weaker component with ¹k 0z . As the
shear increases, the strength of this component increases
relative to the helical structure and turns into a propagating
wave. As shown in Figure 5 the helix itself may be unstable to
an instability that wobbles it back and forth along the y-
direction with a period that is much longer than that of the
propagating wave. This wobbling appears to settle down with
further increase of the shear as shown in Figure 5.

If the shear is further increased, the nature of the solution
changes dramatically to a completely different morphology
(triangle solutions). There is hardly any energy in the z-
independent component of the magnetic field so the helix has
gone and most of the structure is associated with true nonlinear
propagating dynamo waves.

Information about the propagation speeds of the various
solutions can be obtained from a cursory examination of
Figure 6. It shows the time history of the phase of the
propagating pattern. What is clear is that there are two
propagation speeds, a slow one associated with the dynamo
waves (triangles) and a fast one associated with the diamonds.
In fact, by computing the slope, it is easy to verify that the
propagating features in the diamond solutions are Alfvénic.
Thus far, we have increased the shear at fixed Re (and

therefore Rm). However, when Re is increased for most values
of vs, a radically different type of solution appears, corresp-
onding to the + signs in Figure 4. We note that these solutions
only appear in a small region of parameter space. For instance,
these cannot be found for small values of dv vs. This is not
from lack of trying, rather because, even if kinematically the
solution starts with low values of dv vs, it migrates to high
values. These solutions at first glance do not appear to have any
significant large-scale organization and may therefore be an
example of small-scale dynamo action. However inspection of
the time history of the magnetic energy reveals an episodic
increase of the magnetic energy of the solutions (as shown in
Figure 7). Interestingly these events correspond to a collapse to
a solution with most of the energy in kz = 1. This is shown in
Figure 7 where the two panels correspond to one of the
disordered low energy states (A) and the other to the organized
higher energy state (B). Remarkably, despite the fact that the
forcing remains strongly helical, the “+” solution has no
average helicity. Figure 8 shows how the averaged helicity
drops to zero once the Lorentz force is no longer negligible.
Figure 9 shows the spatial dependence of the helicity of the

flow in the linear and nonlinear regimes. Interestingly the
Lorentz force has had the effect of contracting strong helicity to
a small fraction of the volume. Hence even though the helicity
density may be large locally, the average helicity in the
nonlinear regime is small. We stress that we believe this
modification of the global helicity to be a dynamic effect, as it
is apparent only when the Lorentz force has become significant.

4. DISCUSSION AND CONCLUSION

In this paper, we have considered the problem of large-scale
dynamo action in the nonlinear regime, with particular
emphasis on the existence of nonlinear propagating dynamo
waves. At this point in the investigation, we felt it was
appropriate to look at a highly idealized system. Partly this was
due to the need to construct a computationally feasible model;

Figure 9. Plot of the helicity density in the linear regime (left) and nonlinear regime (right) for the “+” solution of Figure 8.
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Table 1
Simulation Parameters

Run No. Vs η A0 dv Vs db Vs Re á ñk Phase Speed Sol Type

1 0.5 0.01 1.0 0.56 0.5 1.46 7.69 0.27 à
2 1.0 0.002 0.25 0.2 0.26 7.14 5.39 0.22 à
3 1.0 0.002 0.5 0.29 0.51 8.6 6.71 0.52 à
4 1.0 0.002 1.0 0.53 0.91 15.08 7.04 0.61 à
5 1.0 0.002 2.5 1.02 1.74 26.3 7.79 N/A *

6 1.0 0.002 5.0 1.67 2.91 37.72 8.85 N/A *

7 1.0 0.002 10.0 2.65 4.44 54.69 9.7 N/A *

8 1.0 0.004 1.0 0.41 0.68 5.93 6.92 0.74 à
9 1.0 0.004 2.5 0.87 1.51 11.75 7.38 N/A *

10 1.0 0.01 1.0 0.23 0.96 1.36 6.9 3.9 × 10−2 !
11 1.0 0.01 1.5 0.39 0.48 2.09 7.39 0.55 à
12 1.0 0.01 2.5 0.63 0.95 3.39 7.39 N/A *

13 1.0 0.02 10.0 1.38 2.19 3.6 7.67 N/A *

14 1.0 0.04 16.0 1.44 2.06 1.86 7.74 N/A *

15 2.0 0.002 0.5 0.31 0.5 29.2 4.24 N/A +
16 2.0 0.002 2.5 0.46 0.77 24.98 7.33 0.96 à
17 2.0 0.002 10.0 1.29 2.16 56.01 9.21 N/A *

18 2.0 0.002 5.0 0.80 1.33 41.48 7.79 N/A *

19 2.0 0.004 2.5 0.38 0.64 11.12 6.86 1.15 à
20 2.0 0.01 1.0 0.09 0.65 1.08 7.24 3.4 × 10−2 !
21 2.0 0.01 2.5 0.27 0.39 3.19 6.82 0.79 à
22 2.0 0.01 5.0 0.49 0.76 5.54 7.06 1.42 à
23 2.0 0.01 10.0 0.89 1.52 9.61 7.37 N/A *

24 2.0 0.02 10.0 0.65 0.97 3.53 7.37 N/A *

25 2.0 0.04 16.0 0.70 0.67 1.81 7.66 1.45 à
26 4.0 0.002 0.25 0.04 0.34 6.05 5.35 9.7 × 10−3 !
27 4.0 0.002 0.5 0.4 0.4 62.49 5.07 N/A +
28 4.0 0.002 1.0 0.42 0.35 63.96 5.23 N/A +
29 4.0 0.002 2.5 0.36 0.38 49.21 5.86 N/A +
30 4.0 0.01 0.5 0.03 0.28 0.69 5.91 1.7 × 10−2 !
31 4.0 0.01 1.0 0.05 0.39 1.10 6.41 3. × 10−2 !
32 4.0 0.01 2.0 0.08 0.59 2.08 6.41 4.2 × 10−2 !
33 4.0 0.01 10.0 0.39 0.6 9.15 6.78 2.37 à
34 4.0 0.01 20.0 0.7 1.09 15.63 7.13 N/A *

35 4.0 0.01 40.0 1.26 2.14 25.49 7.92 N/A *

36 4.0 0.02 2.0 0.06 0.35 0.62 7.09 6.1 × 10−2 !
37 4.0 0.02 2.5 0.07 0.42 0.76 7.10 6.6 × 10−2 !
38 4.0 0.02 10.0 0.29 1.59 3.46 6.76 1.49 à
39 4.0 0.04 16.0 0.30 0.36 1.71 7.10 1.34 à
40 6.0 0.01 0.5 0.018 0.26 0.83 5.37 1.3 × 10−2 !
41 6.0 0.01 1.0 0.032 0.34 1.34 5.64 2.2 × 10−2 !
42 6.0 0.01 2.0 0.055 0.46 2.15 6.10 4.2 × 10−2 !
43 6.0 0.01 4.0 0.11 0.58 4.27 6.00 6.5 × 10−2 !
44 8.0 0.002 0.1 0.37 0.43 99.70 5.97 N/A +
45 8.0 0.002 0.5 0.41 0.70 120.45 5.41 N/A +
46 8.0 0.002 1.0 0.41 0.58 112.38 5.79 N/A +
47 8.0 0.002 2.5 0.34 0.39 88.7 6.21 N/A +
48 8.0 0.004 0.5 0.028 0.31 4.60 4.82 9.4 × 10−3 !
49 8.0 0.004 1.0 0.43 0.37 67.43 5.10 N/A +
50 8.0 0.004 2.5 0.43 0.33 65.95 5.19 N/A +
51 8.0 0.008 1.0 0.015 0.33 2.31 5.19 1.9 × 10−2 !
52 8.0 0.01 0.5 0.031 0.23 0.96 5.10 8.6 × 10−3 !
53 8.0 0.01 1.0 0.026 0.31 1.66 5.13 1.8 × 10−2 !
54 8.0 0.01 5.0 0.46 0.27 34.23 4.27 N/A +
55 8.0 0.01 2.5 0.058 0.41 3.6 5.14 4.3 × 10−2 !
56 8.0 0.01 10.0 0.40 0.30 27.59 4.59 N/A +
57 8.0 0.01 20.0 0.33 0.45 17.28 6.14 1.13 à
58 8.0 0.02 3.5 0.046 0.37 1.26 5.86 5.8 × 10−2 !
59 8.0 0.02 10.0 0.12 0.62 3.20 5.98 0.10 !
60 8.0 0.04 16.0 0.12 0.64 1.37 6.70 0.15 !
61 12.0 0.01 1.0 0.02 0.27 1.98 4.84 1.4 × 10−2 !
62 16.0 0.01 1.0 0.017 0.25 2.31 4.68 9.3 × 10−3 !
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one that was compatible with a broad exploration of parameter
space. More importantly the design was inspired by the
“suppression principle,” namely that at high Rm a large-scale
dynamo will only be seen if some mechanism operates to
suppress the fluctuations. Given the idealized nature of the
model, it behooves us to discuss which features are robust and
will continue to apply in other less idealized systems.

As noted by Tobias & Cattaneo (2015) a critical parameter in
identifying whether a dynamo calculation is in the astrophy-
sically relevant regime is the dynamo supercriticality parameter
given by ( )c = -Rm Rm Rmc c. They argued that it is only
when χ is sufficiently large (of the order of tens or hundreds)
that the kinematic dynamo enters a regime where the growth
rate becomes largely independent of Rm and the role of shear is
then to suppress the small-scale dynamo. In that paper and in
Tobias & Cattaneo (2013) and Cattaneo & Tobias (2014),
because of the two-dimensional nature of the calculation, it was
possible to reach χ ∼ 103. In the nonlinear regime it is difficult
to reach high Rm—although we stress here that the dynamos
considered here are designed to have small Rmc and for this
reason we are able to reach ( – )c ~ 50 100 , which we believe
is significantly larger than for many other three-dimensional
dynamo calculations.

Our main findings are that for a wide range of parameters,
nonlinear large-scale dynamo action is possible. For some of
these parameters the solutions indeed take the form of
propagating dynamo waves. Moreover, the saturated nonlinear
states are invariably very different from the kinematic ones. All
the solutions with large-scale behavior had a vertical extent that
was determined by the box size. Finally, at high enough Re and
Rm the solutions cease to display any systematic behavior.

The vertical collapse of the solutions to the box size and the
fact that at high Rm no solutions display systematic behavior
are related to the design of our model. The first of these is due
to the fact that, for our choice of the forcing, the equations have
no characteristic scale in z and the equations are completely
homogeneous (in that direction). The second is due to the
inability of our type of forcing to continue to maintain a
strongly helical flow at high Re. We anticipate that things may
be very different in a system where the forcing is correlated
with the velocity, for example in a rotating system where the
Coriolis force, which may contribute to the generation of
helical states, is linearly related to the velocity.

The physical reason for the transition between various states is
difficult to characterize here. We stress that these solutions are
extremely nonlinear, in the sense that they are far from the critical
value of Rm for dynamo action. In this strongly nonlinear regime,
the presence of a number of nonlinear states with different
properties and the abrupt transition between them as a parameter is
varied is not surprising. These bifurcations are usually associated
with either the loss of stability of a specific configuration or, in
certain cases, the loss of the state itself. Physically, the presence of
dynamo waves for large values of the shear, however, can be
ascribed to a weakening of the nonlinearity. In this regime where
the shear is stronger, the system is better described by a quasilinear
theory (see for example Squire & Bhattacharjee 2015 for such a
theory applied to accretion disk turbulence)

We finish by commenting on the properties of the solutions
that we believe to be robust. We believe that the dramatic
differences between the kinematic and nonlinear states is not

peculiar to this model, but probably applies in general. Unless
Rm is small, saturation of a dynamo in a state similar to that
from kinematic theory is the exception rather than the rule. In
general the nonlinear states will be very different from the
kinematic ones. Finally, we believe that the “suppression
principle” is a useful guiding idea. We note that the dynamo
waves in the nonlinear regime were smoother than those found
in the kinematic regime—indicating that the Lorentz force has
aided in suppressing the fluctuations in the dynamo.

APPENDIX A

It is obvious from Equation (5) that the forcing is specified once
a prescription is given for the functions yk0. Here k0 is given by

{ }∣ ∣ ( ) 
p

Îk k
k L

:7
2

10 . 70

Conceptually it is easier to describe how these functions are
generated in phase space (i.e., in terms of the Fourier transform
of yk0) which is what is actually used by the spectral code. In
phase space the components of k0 correspond to the locations
where the Fourier amplitude is stored, and yk0 is completely
determined once these complex values are prescribed. The real
and imaginary parts of these are randomly chosen from a
uniform distribution between -Amax and Amax. Amax is a
function of k given by Amax = A0/k so that the spectrum is flat.
A0 is chosen so that the resulting velocity in the kinematic
regime is of ( ) 1 (and is therefore a function of Re). These
values are refreshed on average every turnover time, ( )t kc , for
that specific k. This is achieved as follows: every timestep a
random number R between 0 and 1 is picked from a uniform
distribution. If  d tR t c where dt is the timestep, the values
are refreshed; otherwise they are left unchanged.

APPENDIX B

In this appendix we provide a table (Table 1) of the
simulation runs performed and the resulting solutions.
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